GiD

GID Mesh Library

1. GiD Mesh Library documentation e 3

1.1 GID Mesh Library e 3
112 IntrodUCtion . .. e 3
1.1.2 Library StruCtUre e 3

1.1 2. A Handles ... 4
1.1.22 GIDML ModUleS 4
1.1.2.2.1 Common funCtions e 5
1.1 2 8 FIleS 6
1.1.3 Programming iSSUESottt e et e 6
1.1.3.1 Programming languaget e 6
1.1.3.1.1 Linking GiDML witha C\C++code v, 6
1.1.3.1.2 Linking GIDML with a Fortrancode 6
1.1.3.2 ReqUIremMeNnts 7
1.1.3.3C0dINg Style 7
1.1.3.4 General @spectsSo 7
1.1.3.5DependencCies 7
1.1.4Howtousethe library 7
1.1.4.1 Example of mesh generation module 8

1.1.4.1.1 Variant of the example 10

1.1.5 Terms of use and licencing schema 10

1.2GIDML IO module e 10
1.2.1 Module introduction e 11
1.2.2 Synthetic example 11
12310 SHUCIUIES e e e e e 12

1.2.3.1 GiDInput and GIiDOULPUL e 12
1.2.3.1.1 Common data in GiDInput and GiDOutput 12
1.2.3.2 Callback functions (GiDInput) 14
12,3 3 NOUES .o 14
1.2.3. 4 Elements e 14
12341 ELEM _TYPE .. . 15
1.2.3.5Type of entity e 15
1.2.4 APLfUNCHIONS . . . e 16
1.2.4.1 Module information and data creator, 16
1.2.4.1.1 GiDML_IO module information 16
1.2.4.1.2 GiDML module information 17
1.24.1.3 Data Creatort 18
1.2.4.2 Create and delete handles and structures 18
12421 GiDINPUL ..o 18
1.2.4.2.2 GIDOUIPUL . .o 21
1.2.4.3 Callback functions 22
1.2.4.4 Mesh definition 25
1.2.4.4.1 Mesh dimensioNn e 25
12442 MesSh NOOES o e 25
12443 Mesh edgesot e 26
12444 Meshfaces 28
12445 Mesh elements 30
1.2.4.4.6 Generic elements 32
1.2.4.5 Additional parameters 34
1.2.4.5. 0 Parameters 34
1.2.4.5.2 AtNDULESo 36
1.2.4.6 Write and Read using files 39
1.2.4.7 Other funCtions e 41
125 Termsofuse ofthemodule 41

1.3 MOdUIES .. 41
1.3. 1 Mesh generation e 41
1.3.2 COMMING SOON . . . ettt ettt e e e e 42

1.3.2.1 Mesh generation modules 42
1.3.2.2 Mesh editing modules 42

1.3.2.3Mesh analysismodules 42

GiD Mesh Library documentation

GiD Mesh Library

Introduction

This is the documentation of the GiD Mesh Library (GiDML).
It includes a description of the GiD Mesh Library and its modules, the API description, the coding style and
licence schema.

The GiD Mesh Library contains several libraries (GIDML modules) dealing with mesh generation, edition or
analysis, to be used by other softwares.

These meshing operations have been conceived in the frame of the numerical simulations, considering several
numerical methods and kinds of simulations, leading to several types of meshes: unstructured, cartesian,
structured, etc.

Library structure

The GIiD Mesh Library is formed by a collection of libraries (modules) containing several meshing functionalities
(for mesh generation, analysis and editing), ready to be called by an external software. (see the list of available
modules in GiDML modules).

Each GiDML module consists in a compiled version of the library, and the corresponding header file where all
the public functions of the module are declared. The naming convention used for them is the following one:

® gidml_nameofthemodule.lib
® gidml_nameofthemodule.h

The Input/Output module (GiDML_IO) is a special module, as it is mandatory for using any of the other modules
of the GiD Mesh Library (see GiDML 10 module). All the modules expect to receive the input data in the GiDInp
ut format, and return the output data in the GiDOutput one. The GiDML_IO module provides the API to use this
data structures, allowing any external software to call the functions of any GiDML module. GiDML_1O also offers
functions to write and read the data into files (see Write and Read using files), which may be useful to check the
data outside the program workflow.

A scheme of the structure of the GiD Mesh Library is depicted hereafter, where the arrows indicate the links
between libraries. In this example, the external program is willing to use the module GiDML_ModuleX, so it is
linked to it and also to GiDML_10 module.

https://cimneprepost.atlassian.net/wiki/spaces/GMLD/pages/13772338/GiDML+Modules
https://cimneprepost.atlassian.net/wiki/spaces/GMLD/pages/13772372/GiDML+IO+module
https://cimneprepost.atlassian.net/wiki/spaces/GMLD/pages/13772440/Write+and+Read+using+files

— GiD Mesh Library ——

Pelezeted

DR MedulcB
Madule pidmil_module_b.lis
Gafin_Peoduled gaiml_rodule b o le

TROMEL_Module)

pdml_meduls_s.1& 4
pdml_madule_a.h

ool gml_medule_zh
iy GADRAL_B /

gpdml_k=lib
pdmi_leh

pidml_madile_xlib

Structure of the GiD Mesh Library
Handles

All the interaction between the external software and the data for and from the different modules is done using H

andles. Handles are opaques pointers to GiD Mesh Library internal data structures which are managed by the
library.

In the gidml_io.h file (from the GiDML_10O module, see GiDML IO module), the following definitions are made, in
order to help the developers to differentiate and deal with the handles:

typedef void * G DI nput_Handl e;
typedef void * G DQut put Handl e;
typedef void * G Dl O Handl e;

As input and output data structures share several parts, GiDIO_Handle is used in those functions which work on
these common parts.

GiDML Modules

Each GiDML module is formed by its library (.lib or .a) and its header public file (.h):

gidml_nameofthemodule.lib (MS Windows) or gidml_nameofthemodule.a (Linux, macOS)
gidml_nameofthemodule.h

As described in Coding style the name of the files are in lower-case, but the name of the module itself can be in
Camel-case.

All the public functions of the module are declared in the corresponding header file, using the following naming
convention:

GiDML_<NameOfTheModule>_<NameOfTheFunction>

Here an example:

https://cimneprepost.atlassian.net/wiki/spaces/GMLD/pages/13772353/Coding+style

const char *G DM._Tet rahedraSnoot hing GetErrorString(const int error_id
)

Common functions

The public functions accessible from the module are declared in the gidml_nameofthemodule.h file. However,
there are some common functions to all the modules. They are presented hereafter.

GetModuleName

This function is used to get at run-time the identifier name of the module.

The declaration of this function is:

const char *GiDML_<NameOfTheModule>_GetModuleName();

The function returns a const char * with the name of the module which shouldn't be freed nor deleted.

GetModuleVersion

This function is used to get the version of the module.

The declaration of this function is:

const char *GiDML_<NameOfTheModule>_GetModuleVersion();

The function returns a const char * with the identifier of the version of the module. The returned string shouldn't
be freed nor deleted.

Eventually, a module can provide a function to get their version in a numeric format (int or double) in order to
detect easily if the module's version is newer or older than expected.

GetModuleFormatVersion

This function is used to get the version of the format of file used by the module for the input or output data when
dumped into a file (see Write and Read using files).

The declaration of this function is:

const char *GiDML_<NameOfTheModule>_GetModuleFormatVersion();

The function returns a const char * containing the identifier of the version of file format, which shouldn't be freed
nor deleted.

CheckConsistency

This function is used to check the consistency of the input data to be used in the module. The checks done
inside this function are light (computationally inexpensive), and only try to detect pathological cases.

For example, if the module to be used generates a tetrahedra volume mesh from a contour mesh made of
triangles provided as input, this function would check for a triangle mesh in the input data.

The declaration of this function is:

int GiDML_<NameOfTheModule>_CheckConsistency(const GiDInput_Handle hdl_gin);

The function returns 0 if the input data is ok, or an integer different from O (i.e. an error_id) if something went
wrong in the consistency checking process. To get the error in a human readable string form we can use the
function int GiDML_<NameOfTheModule>_GetErrorString(int) using the error_id returned from
CheckConsistency.

GetErrorString

This function is used to get the error message string corresponding to a specific error_id.

The declaration of this function is:

const char GiDML_<NameOfTheModule>_GetErrorString{*}(const int error_id);

The function returns the error message as a const char *. This returned error message shouldn't be freed nor
deleted.

https://cimneprepost.atlassian.net/wiki/display/MLIB/Write+and+Read+using+files

Eventually, the corresponding GiDML module may include the collection of messages returned in the public
header file, so that they can be managed or used by the end-application, for instance to translate messages,
replacement, or others.

A recommended practice is to use error_id equal to 0 for a successful execution of the function, when no
problem arises. But it's up to the module to define their error_id's and messages.

DeleteGiDOutputContent

This function is used to delete the content of the output data stored in the GiDOutput_Handle. As this data has
been generated by the GiDML module, its deletion must be carried out by the module itself.

The declaration of this function is:

int GIDML_<NameOfTheModule>_DeleteGiDOutputContent(GiDOutput_Handle hdl_gout);

The function returns 0 if the content of the GiDOutput_Handle has been deleted succesfully, or an integer
different from O (i.e. an error_id) otherwise.

Files

In some cases it may be interesting to dump the contents of the GiDInput or GiDOutput structures into a file, or
read it from a file. The GiDML_IO module provides some functions to read and write this data from and to files
(see Write and Read using files).

The filenames end with the extension .gidml, and are in binary format. Specifically, the HDF5 format is used.
They can be examined with any HDF5 viewer software (such as HDFView).

Each version of the GiDML_IO module may use a different version of the file-format (the information included or
the file structure). The file-format version can be checked with GetModuleFormatVersion and the module version
with GetModuleVersion, both included in the section Module information and data creator.

A .gidml file may contain information of a GiDInput, a GiDOutput or both structures.

Programming issues

The GiD Mesh Library bundle provides examples and specific instructions to compile and link external program
with the module libraries.

Programming language

The GiD Mesh Library is developed in C++.

The API has been designed to be as simple as possible and to make it easier in its integration in the final
application.

The API uses handles (void *) and basic types (double * and int * arrays) to pass the data and point to internal
data structures through the different API functions, in order to minimize the programming impact in the final
application.

Linking GiDML with a C\C++ code
Include the corresponding gidml_nameofthemodule.h header file, and link it with the corresponding gidml_name

ofthemodule.lib or gidml_nameofthemodule.a library file. If the destination application is written in 'C' the C++
libraries (stdc++, stl, etc.) should also be added to the link process.

Linking GiDML with a Fortran code

To use the library in FORTRAN the .h include files are not required, only the library is needed to be added for
the linker.

Depending on the version of FORTRAN (e.g. FORTRAN77, FORTRAN90) and the compiler used it could be
necessary to write an extra wrapping .F90 interface file, that provide the bindings between FORTRAN and C

https://cimneprepost.atlassian.net/wiki/spaces/GMLD/pages/13772440/Write+and+Read+using+files
https://cimneprepost.atlassian.net/wiki/spaces/GMLD/pages/13782074/Common+functions
https://cimneprepost.atlassian.net/wiki/spaces/GMLD/pages/13782074/Common+functions
https://cimneprepost.atlassian.net/wiki/spaces/GMLD/pages/13772422/Module+information+and+data+creator

(naming conventions and parameters).
Requirements

The requirements and dependencies are specifics to the GiDML module used.
As the GIDML Mesh library is developed in C+, it requires to be linked with the C+ library (stdc++, msvcrt) and
eventually the STL (Standard Template Library).

Look for the Requirements page or each module.

in the GIDML_IO's pages:
The GIDML IO module also requires:

® the zlib library version >= 1.2.5.
® the hdf5 and hdf5_hl libraries version >= 1.8.5.

Look into the corresponding COMPILE.txt for more details.
Coding style

All code in the GiDML functions are following the 'Google c++ Style Guide":
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml

The naming of the functions follows the rule:

® the first letter of each word of name is capital.
Example: MyFunction();

To identify public visible functions of the library module the prefix 'GiDML_'is being used. These are the
functions which may be called from an external program.

Each input parameter must have the directive const, which indicates that it cannot be modified by the function.
The parameter order is: Input parametrs followed by Output parameters.

Ex: MyFunction (const p_one, p_two, p_three);

General aspects

IMPORTANT:AIl arrays start with zero index.
Dependencies

C++ library and eventually the STL library.
It depends on each GiDML module.
Look for the COMPILE.txt and the corresponding GiDML module page:

® GIiDML_IO compilation
® GIiDML_OctreeTetrahedraMesher module compilation
¢ GiDML_Image2Mesh module compilation

How to use the library

The basic steps to use a module X of the GiD Mesh Library inside an external program A are:

http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml
https://cimneprepost.atlassian.net/wiki/pages/createpage.action?spaceKey=GMLD&title=GiDML_IO+compilation&linkCreation=true&fromPageId=13772360
https://cimneprepost.atlassian.net/wiki/spaces/GM/overview
https://cimneprepost.atlassian.net/wiki/spaces/GM/pages/13836654/Module+compilation
https://cimneprepost.atlassian.net/wiki/spaces/GMLi2m/pages/13836712/Module+compilation

Include the header files gidml_io.h and gidml_module_x.h in the compilation of A.

Then, A can call and use any of the functions declared in the API of gidml_module_x.lib.

Link A with gidml_io.lib and gidml_module_x.lib, and their dependencies (stdc++, stl, mvcrt, etc.).
gidml_io also depends on third part open source libraries: zlib and hdf5 and hdf5_hl, these libraries are
required to link

We will use a simple synthetic example to make it clearer.
Example of mesh generation module

In this example we are suposing that a module for generating a tetrahedra mesh called GiDML_FakeTetraMesh
er is included in the GiD Mesh Library, and we want to use it in our code.

The mesher needs as an input the contour mesh, made of triangles, of the volume to be meshed, and the
general element size desired for the volume mesh as a parameter. We will use a hardcoded mesh of triangles
for this example, which represents a cube of 10 units of length size.

C++ code of the example

#include "gidm _io.h"
#include "gidm _fake_tetra_mesher.h"
#def i ne NAVE_OF MY _PROGRAM "MY_PROGRAM' //identifier of who is creating
the input data
int main() {
/1in this exanple a cube which contour is defined by 12 faces is used

doubl e coordi nat es[24] ={0, 0, 0, 10, 0, O, 10, 10, O, O, 10, 0, O, O, 10, 10, O, 10, 10, 10
, 10, 0, 10, 10};

int conectivities[36]={0,1,3,1,3,2,1,2,5,2,5,6,0,4,3,3,4,7,4,5,7,5,6,7,0
lll4l 1l4l 5! 3! 2! 7! 7! 2! 6};

/1 Create G DI nput Handl e.

const int n_dinmension = 3; //space dinension of the data

const char *nodul e_nanme = G DML_FakeTet raMesher _Get Modul eNane() ;

const char *nodul e_format_version =
G DML_FakeTet r aMesher _Get Mbdul eFor mat Versi on(); //nodul e data

G DI nput _Handl e hdl _i nput =G DML_I O_NewG DI nput Handl e(nodul e_nane,
nmodul e_format _versi on, NAVE OF MY PROGRAM n_di nensi on);

//the nodul e name and format are interesting in case that the input is
saved/read to/froma auxiliary file, in order to identify its use

/1Fill GD nput Handle with data
const int nunber_ of nodes = 8§;
const int nunber_of faces = 12;
const El enifype contour_el enent _type = G D_TRI ANGLE ELEMENT;
const int nnode_ el enent = 3;
const doubl e general size = 2.0;
G DML_I O _Set NodesCoor ds(hdl _i nput, nunber_of nodes,
n_di nensi on, nunber _of _nodes, coordi nates); //nodes data

G DML_I O _Set Faces(hdl _i nput, nunber_of _faces, conectivities,
contour_el ement _type, nnode_elenent); //elenents data

G DM__I O _Set Par anet er (hdl _i nput, " GENERAL_MESH_SI ZE", general _si ze); //add
a paraneter nanmed ' GENERAL_MESH SI ZE'

/] Check the that the Input format is correct.
int error_returned =
G DML_FakeTet r aMesher _CheckConsi st ency(hdl _i nput);

/| G DQut put Handl e.
G DCQut put _Handl e hdl _out put = G DML_I O NewG DCut put Handl e() ;
if (error_returned == 0){
/1 Call the mesher.
error_returned = G DM._FakeTet raMesher (hdl _i nput, hdl _out put);

}

if (error_returned)
const char *error_nessage =
G DML_FakeTetraMesher GetErrorString(error_returned);
/I sonehow show this error nessage. ..
} else {
/1 CGet the tetrahedra nesh
const int nunber_of _nodes_in_tetra_nmesh = G DM__I O_Get Nunber Of Nodes(
hdl _out put);
const int numof _tetras = G DVML_I O _Get Nunmber OF El enrent s(hdl _out put

)
doubl e *coords = NULL;
G DML_I O Get NodesCoords(hdl out put, coords);
int *tetras_connectivity = NULL;
int fail=G DML_I O Get El enents(hdl _output,tetras_connectivity);
}

//Delete data from G DQut put
G DML_FakeTetraMesher Del et eG DQut put Cont ent (hdl _out put) ;

//Delete data structures inside G Dl nput and G DQut put structures
G DML_I O Del et eG DI nput Handl e(hdl _i nput) ;
G DML_I O Del et eG DQut put Handl e(hdl _out put) ;

return O;

Variant of the example

It has to be noted that in the example above, code may be simpler if the function GiDML_IO_NewGiDInputHandl
eWithFaces is used instead of GiDML_|IONewGiDInputHandle, as it integrates in its parameters the contour
mesh.

Using it would replace this code:

voi d* hdl _i nput=G DML_I O NewG DI nput Handl e(nodul e_nane, nodul e_f or mat _ver
si on, NAVE_OF _MY_PROGRAM n_di mensi on) ;

G DML_I O_Set NodesCoor ds(hdl _i nput, nunber _of nodes, n_di nensi on, nunber _of _
nodes, coordi nates); //nodes data

G DML_I O Set Faces(hdl _i nput, nunber _of faces, conectivities,contour_el enen
t _type,nnode_elenent); //elenents data

by this one

voi d* hdl _i nput =G DML_I O_NewG DI nput Handl eW t hFaces(nodul e_nane, nodul e_f
ormat _versi on, NAVE_OF MY_PROGRAM n_di nensi on, nunber _of nodes, coor di nat es
, hunber _of faces, conectivities,contour_el enment_type, nnode_el enent);

Terms of use and licencing schema

Each GiDML module has its own lincencing schema. It has to be checked in its documentation, and with the
owner of each module.

Specifically, the GIiDML_10 module (which is property of CIMNE), is free and public, and can be used without
any special agreement for any purpose.

GIDML 10 module

This is the only mandatory module to use the GiD Mesh Library. It deals with the input and output data for all the
other modules, which share the same data structure.

The GiDML_IO module is public and free, and it can be used without restriction, with no need to sign any
specific agreement with CIMNE.

The library and the .h file of this module are:

® gidml_io.lib (libgidml_io.a for Linux)
® gidml_io.h

and can be downloaded from ftp://www.gidhome.com/pub/gidml

Note: The source code (C++) of the GiDML_IO module is not public, only the compiled library is provided (for
several platforms)

10

http://www.cimne.com
ftp://www.gidhome.com/pub/gidml/

11

To use it It require also some open source third part libraries:

® hdf5 and hdf5_hl libraries
* zlib

These libraries could be downloaded from Internet and compiled. Precompiled binaries are provided with
the GIiDML_10 module.

All the interaction between the external software and the data is done vie Handles.

The API functions of the GIDML_10 module allow to fill (Set) and access (Get) the data from the input and output
structures.

This document refers to the documentation of the version 1.10.0 of the GiDML_IO module.
Module introduction

This is the documentation of the module of the GiDMeshLibrary GiDML_IO. It refers to its version 1.9.0.
Aditional information can be found at www.gidhome.com/gidml.

For any comment or suggestion, please contact gidml@cimne.upc.edu.
Synthetic example

A synthetic example in c++ of how to use GiDML_10 API functions is shown hereafter:

int main() {

G DI nput _Handl e gi nput _handl e=NULL;

G DCQut put _Handl e gout put _handl e=NULL;

G DM__I O_NewG DI nput (gi nput _handl e); //This function returns the
pointer to the G DI nput, the ginput_handl e

MyCode_Fi | | G DI nput Wt hWhat ever (gi nput _handl e) ;

G DML_I O NewG DQut put (gout put _handl e); //This function is to get the
hanbl e of G DQut put

G DML_Cal cul at eSornet hi ng(gi nput _handl e, gout put _handl e); //This is a
function of whatever G DML nodul e, doing 'sonething' using the data in
gi nput _handl e, and returning the result in goutput_handl e

MyCode_Get Resul t Fr omG DQut put (gout put); //process the results and save
it as MyCode needs

MyCode_Del et eWhateverFill edlnG Dinput(); //as the data inside G Dl nput
is created by MyCode, it is the one who nust delete it

G DML_I O Del eteG DI nput (ginput); //This function is deleting the
G Dl nput data structure, but not its contents, as it has been created
outside the G D Mesh Library

G DML_Cal cul at eSonet hi ng_Del et eG DQut put Cont ent (gout put);// This
function is deleting the G DQutput data, as they have been created by
the G D Mesh Library

G DML_I O Del et eG DQut put (goutput); //This function is deleting the
G DQut put data structure

return O;

}

https://cimneprepost.atlassian.net/wiki/spaces/GMLD/pages/13772335/Handles
http://www.gidhome.com/gidml.

12

More detailed examples specific for each GiDML module are presented in Modules.
I/O Structures

Hereafter the structures and variables to be used for input and output data are detailed.

In some of the structures and variable names presented hereafter, the word "attributes" appears. The meaning
of it is an array (of doubles or integers) attached to mesh entities.

GiDInput and GiDOutput

All the data used in the GiD Mesh Library to communicate with the external solver is grouped into two main
structures: GiDInput, and GiDOutput. An overview of it is shown in the following figure:

GiDInput | GiDOutput

Mame of the moduls
Format version of the modules
Id data creator

MName of the module
Format version of the modul
Id data creator

Dimensicon

Modes Dimension
Edges MNodes
Faces Edges
Elemeaents Faces
Elements

Parameaters

Attributes
Farameters

Callback functions Attributes

Not all structures must be filled, usually only some of them are used, the rest are left empty.

Mainly, these two structures have the same structure, although there are some specific data only present in one
of them. The data present in GiDInput and GiDOutput structures is detailed hereafter:

Common data in GiDInput and GiDOutput

Module information and data creator

The data for identifying the module the data has been created for, as well as the creator of the data is presented
in this section.

® Version of the GIDML_10 module and format: the version of the GiDML_IO module, as well as the
version of the format used to dump the data into a file is stored in GiDInput and GiDOutput structures.

®* Name and format version of the module: it is useful in some situations, to know the gidml_module the
data has been created for. The name of the module, as well as the format version are stored. The format
version is used when writing the data into, or reading it from a file (see Write and Read using files). The
type of variable of the name and the format version is char.

* |dentifier of the creator of the data: an identifier of the creator of the data (in char format) is stored also
in the GiDInput and GiDOutput data. It is usefull for helping to reproduce some behaviour of the
corresponding module, or to try to track some data.

Mesh definition

In this section, the data needed to define a mesh is detailed.

https://cimneprepost.atlassian.net/wiki/spaces/GMLD/pages/13772452/Modules
https://cimneprepost.atlassian.net/wiki/spaces/GMLD/pages/13772338/GiDML+Modules
https://cimneprepost.atlassian.net/wiki/spaces/GMLD/pages/13772440/Write+and+Read+using+files

13

® Spatial dimension: this refers to the spatial dimension the corresponding module is working with
(typically, 2 or 3). It is stored in int format.

® Nodes: this includes the coordinates of the nodes and more information linked to them (attributes). More
details in Nodes.

® Edges: this includes the connectivities of the edges (line elements) and more information linked to them
(attributes) . More details in Elements.

® Faces: this includes the connectivities of the faces (surface elements) and more information linked to
them (attributes) . More details in Elements.

® Elements: this includes the connectivities of the volume elements and more information linked to them
(attributes) . More details in Elements.

Parameters

In this section, the data not directly linked to the mesh entities is detailed:

® Scalar Parameters: it is used to include parameters identified by its unique name, needed for the
corresponding gidml module, not directly related to the mesh entities. Each gidml module should expect
to receive input parameters with the expected name.

scalar parameters are currently stored as a double
For instance: a module can expect in the input data scalar parameters like:

® general mesh size

® aflag indicating if the mesher is constrained or not
[]

There is an specific #define in gidml_io.h file to indicate that a parameter is not valid (or has been not filled). It is
#define INVALID_PARAMETER_VALUE DBL_MAX.

Note that there is no need for all the parameters to have a valid value. There can be parameters with no valid
ones

® Vectorial parameters: these are arrays of integers or doubles that may be used to include information of
array nature, but not related directly to the mesh entities.

An example of this data could be a module expecting to receive in the input data three arrays of coordinates
(one for each direction, x, y and z) defining a regular cartesian grid in the 3D space. In this case there should be
one vector parameter for each direction

Attributes

Attributes are used in the context of the GiD Mesh Library to refer arrays of integers or doubles with a name that
are attached to mesh entities: nodes, edges, faces, or elements. (Data arrays not attached to mesh is called
'Vector parameters' in this library)

It has to be noted that the length of the arrays in implicitly the same as the amount of associated mesh entities.
For instance: the ModuleAttributes of the nodes, are always of length equal to the number of nodes.

Although they can be used for different purposes depending on the gidml module, we define two conceptual
levels of them:

®* Module attributes: are the ones expected by the gidml module to be used for some predefined
operation.

An example of this could be a module expecting to receive a flag for each node of the input data (it would be a
vector of type integer related to the nodes), or the mesh size related to each face of the input (it would be a
vector of type double related to the faces).

® User attributes: The input data must be somehow transmitted to some output entities created by the

https://cimneprepost.atlassian.net/wiki/spaces/GMLD/pages/13772413/Nodes
https://cimneprepost.atlassian.net/wiki/spaces/GMLD/pages/13772416/Elements
https://cimneprepost.atlassian.net/wiki/spaces/GMLD/pages/13772416/Elements
https://cimneprepost.atlassian.net/wiki/spaces/GMLD/pages/13772416/Elements

14

module, but usually they are not needed to perform any predefined operation of the module (it they are
unknown they doesn't do any operation, are only transferred to the output)

An example of this could be a module mapping nodes onto a collection of triangles (faces). In this case, the input
would be a collection of faces and a collection of nodes, and the output the collection of nodes in the final
position (already mapped onto the faces). If that faces has some UserAttribute (integer flag) associated in the
GiDInput, the module may return a UserAttribute assigned to the nodes (in the GiDOutput structure), so as the
nodes has the flag of the face they are onto.

Callback functions (GiDInput)

Inside GiDInput structure there are also included some pointers to callback functions that can be used to get
interactive feed-back with the corresponding gidml module at execution time. These functions are:

voi d Set Cal | backSt at us(G DI nput _Handl e& hdl _gi n,

void fn,void client_data);

voi d Get Cal | backSt at us(const G Dl nput _Handl e& hdl _gin, voi d*& fn, voi d*&
client _data);

voi d Set Cal | backError (G Dl nput _Handl e& hdl _gi n, voi d* fn, voi d*
client_data);

voi d Get Cal | backError(const G DI nput _Handl e& hdl _gi n,voi d*& fn, voi d*&
client _data);

A callback function is simply a 'neutral' function, with a predefined prototype of its arguments, that will be called
when some event happen.

Set Cal | backSt atus coul d be used to provide infornmation of the current status of the
nmeshi ng process, like the percent that is done, the step of the algorithm its
convergence, etc.

Set Cal | backError could be used to provide information of sone error detected by the
nmesher.

Nodes

The structure for defining the nodes of the input and output meshes contains:

®* Number of nodes: an integer value indicating the number of nodes (nnodes).

®* Nodes coordinates: they are in an array of doubles of length equal to ndim * nnodes (where ndim is the
spatial dimension, and nnodes the number of nodes).
Coordinates are interleaved, e.g. in 3D case x0,y0,z0,x1,y1,z1,...

® Attributes: a collection of named attributes (arrays of integers or doubles) related with the nodes. Each
array has a length equal to nnodes.

Elements

Three categories of elements are used in the input and output data: edges (for line elements), faces (for surface
elements) and elements (for volume elements).

The structure for defining the edges, faces and elements of the input and output meshes is the same (Elements).
For notation purposes, we will use in this section the term 'elements' for referring to edges, faces and elements,
independently of its category.

This structure contains:

®* Number of elements an integer value indicating the number of elements (nelements).

https://cimneprepost.atlassian.net/wiki/spaces/GMLD/pages/13772428/Callback+functions
https://cimneprepost.atlassian.net/wiki/spaces/GMLD/pages/13772428/Callback+functions

15

® Elements connectivities: they are in an array of integers referring to the nodes defined in Nodes. The id
of each node (the value in the connectivities array) refers to the position of the node in nodes definition.
For example, the [2 0 3] connectivity array refers to the third, first and fourth nodes inside Nodes structure
(remember the arrays begin by 0, so node indexes to00).

®* Number of element types: the number of different element types included in the structure
(n_elem_types). An element type is considered as a kind of element with the number of nodes it has. Its
stored as an integer.

For instance, if we are including triangles of 3 nodes, triangles of 6 nodes and quadrilateral of 4 nodes, we
should consider 3 element types.

®* Element types: this indicates the element types assigned (see ELEM_TYPE for their definitions). It is an
array of enums (ElemType) of length equal to n_elem_types.

®* Number of elements by type: this indicates the number of elements for each element type. It is an array
of integers of length equal to n_elem_types.

®* Number of nodes for each element type: this indicates the number of nodes for each element type. Itis
an array of integers of length equal to n_elem_types.

® Attributes: a collection of attributes (arrays of integers or doubles) related with the elements. Each array
of doubles has a length equal to the number of elements.

The elements connectivities corresponds to all the elements sorted so the elements of the same type should be
together.

An example is shown for the case there are more than one element type. Imagine we have are 2 triangles of 3
nodes (tri3), 1 triangle of 6 nodes (tri6) and 2 quadrilateral of 4 nodes (qua4), one option will be to put first the
tri3, followed by the tri6, and then the qua4 elements as follows:

Number of elements: 6

Elements connectivities: {01234564031524823561897}
Number of element types: 3.

Element types: {GID_TRIANGLE_ELEMENT GID_TRIANGLE_ELEMENT
GID_QUADRILATERAL_ELEMENT}

Number of elements by type: {312}

Number of nodes for each element type: {36 4}

The element connectivities broken down would be like this:
3 triangles tri3 1 triangle tri6 2 quadrilateral quad4
elements connectivitites->[01 2] [345][640][315248][2356][1897]

ELEM_TYPE

ENUMERATION ELEM_TYPE

Enumeration of types. This list have all different type of mesh elements treated by the GiD Mesh Library. These
are:

GID_NONE_ELEMENT = 0 //lundefined element type
GID_LINE_ELEMENT =1
GID_TRIANGLE_ELEMENT =2
GID_QUADRILATERAL_ELEMENT =3
GID_TETRAHEDRON_ELEMENT =4
GID_HEXAHEDRON_ELEMENT=5
GID_PRISM_ELEMENT =6
GID_POINT_ELEMENT =7
GID_PYRAMID_ELEMENT =7
GID_SPHERE_ELEMENT =8
GID_CIRCLE_ELEMENT =9

Type of entity

https://cimneprepost.atlassian.net/wiki/spaces/GMLD/pages/13772413/Nodes
https://cimneprepost.atlassian.net/wiki/spaces/GMLD/pages/13784916/ELEM_TYPE

16

Different types of entities are used in the GiD Mesh Library.

The entity type is defined in gidml_io.h header file, with the following enum:
enum GIDML_TYPE_OF_ENTITY {

GIDML_NODE=0,
GIDML_EDGE=1,
GIDML_FACE=2,
GIDML_ELEMENT=3

h
API functions

As already commented in Handles, the access to the input and output data is done via handles. In the gidml_io.
h header file, all the needed API functions to set and get these data are provided.
They are detailed hereafter.

Module information and data creator

GiDML_IO module information
These functions refere to the GiDML_10 module itself.

GIiDML_IO_GetVersion

Declaration:

const char *GiDML_10O_GetVersion();

Definition:

This function provides with the version of the GiDML_IO module. This version affects to the data of the input and
output used in the GiD Mesh Library (don't get confused with the version of a specific GiDML module).

The version of the GiDML_IO module can be seen in the gidml_io.h file, on the #define GiDML_IO_VERSION.
Parameters:

No input nor output parameters used in this function.

The version of GIiDML_IO module is returned in a const char* format. It typically is of type: X.Y, where X and Y
are integer numbers.

GiDML_IO_GetFormatVersion

Declaration:

const char *GiDML_10_GetFormatVersion();

Definition:

This function provides with the version of the format of the file used when writing the input and output data into a
file (don't get confused with the version of the module GiDML_IO).

The version of the GIiDML_IO format can be seen in the gidml_io.h file, on the #define
GiDML_IO_FORMAT_VERSION.

Parameters:

No input nor output parameters used in this function.

The version of GIDML_10 format is returned in a const char* format. It typically is of type: X.Y, where X and Y
are integer numbers.

GiDML_IO_GetFormatVersion_Number

Declaration:
double GIDML_IO_GetFormatVersion_Number(const char version);
Definition:

https://cimneprepost.atlassian.net/wiki/spaces/GMLD/pages/13772335/Handles

17

This function provides with a number (in double format) corresponding to the version of the GiDML_10 format. It
is guaranteed that a newer version will have a number higher than an older one. It is usefull to identify the
versioning system with numbers which grow in time, so as checking the number one can identify if one version is
older or newer than another.

Parameters:

The input for this function is the version (in const char* format) which the number is wanted, and returns the
number in double format.

GiDML_IO_GetMinimumFormatVersionToSave

Declaration:

const char *GIDML_10_GetMinimumFormatVersionToSave(const GiDIO_Handle hdl);

Definition:

This function provides with a the minimum format version capable to write in file the data included in the input or
output data. For instance, if a new version is including an extra information in the nodes structures which is not
stored in the corresponding GiDInput structure, the data can be written down with an older format.

Parameters:

The input for this function is the GiDInput or GiDOutput handle (GiDIO_Handle), and it returns the minimum
format version that can be used to write down the data inside it (in const char* format).

GiDML module information

These functions refers to the GiDML module the data is used for. For instance: if the data is created as an input
for the module GiDML_FakeTetrahedraMesher (obviously, the GiDML_IO module is used to get and set the data
for and from the handles), the functions defined hereafter refers to GiDML_FakeTetrahedraMesher module (not
the GiDML_1O one).

GIiDML_IO_GetGiDMeshLibraryModuleName

Declaration:

const char* GiDML_IO_GetGiDMeshLibraryModuleName(const GiDIO_Handle hdl);

Definition:

This function provides with the name of the GiD Mesh Library module the data has been created for (in const
char* format).

Parameters:

The input for this function is the GiDInput or GiDOutput handle (GiDIO_Handle), and it returns the GiD Mesh
Library module name (in const char* format).

GiDML_IO_GetGiDMeshLibraryModuleFormatVersion

Declaration:

const char* GiDML_IO_GetGiDMeshLibraryModuleFormatVersion(const GiDIO_Handle hdl);

Definition:

This function provides with the version of the format of the file of the corresponding GiDML module used when
writing the input and output data into a file (don't get confused with the version of the GiDML module).
Parameters:

The input for this function is the GiDInput or GiDOutput handle (GiDIO_Handle), and it returns the GiD Mesh
Library module format version (in const char* format).

GiDML_IO_SetGiDMeshLibraryModuleName

Declaration:

void GIDML_10_SetGiDMeshLibraryModuleName(const char* module_name,const GiDIO_Handle hdl);
Definition:

This function is used to set the name of the GiD Mesh Library module the data has been created for into the
GiDInput or GiDOutput structure.

Parameters:
The input for this function is the module name (in const char* format) and the GiDInput or GiDOutput handle
(GiDIO_Handle) of the corresponding GiDInput or GiDOutput structure.

GiDML_IO_SetGiDMeshLibraryModuleFormatVersion

Declaration:

void GIDML_10_SetGiDMeshLibraryModuleFormatVersion(const char* module_format_version,const
GiDIO_Handle hdl);

Definition:

This function set the version of the format of the corresponding GiDML module inside the GiDInput or GiDOutput
structure (don't get confused with the version of the GiDML module).

Parameters:

The input for this function is the GiD Mesh Library module format version (in const char* format)
'module_format_version' and the GiDInput or GiDOutput handle (GiDIO_Handle).

Data creator

It is optional for the GiDInput and GiDOutput structures to include an identifier of the creator of the data. This
field can be useful when checking files where the data has been dumped to, in order to know the origin the
created data.

GiDML_IO_GetGiDMeshLibrarylOCreator

Declaration:

const char GIDML_IO_GetGiDMeshLibrarylOCreator(const GiDIO_Handle hdl, char *io_creator);

Definition:

This function provides with a the identifier of the creator of the data inside the handle (in char* format).
Parameters:

The input for this function is the GiDInput or GiDOutput handle (GiDIO_Handle), and it returns the identifier in
the parameter 'io_creator' (in char* format).

GiDML_IO_SetGiDMeshLibrarylOCreator

Declaration:

const char GIDML_IO_SetGiDMeshLibrarylOCreator(const char *gidml_io_creator,const GiDIO_Handle hdl);
Definition:

This function set the identifier of the creator of the data inside the data structure.

Parameters:

The input for this function is the gidml_io_creator (in const char* format) and the GiDInput or GiDOutput handle
(GiDIO_Handle) the data creator refers to.

Create and delete handles and structures

GiDInput

/[Functions to get and delete GiDInput handle

18

G Dl nput _Handl e G DML_I O NewG DI nput Handl e(const G DI nput _Handl e

hdl _gi n);

G Dl nput _Handl e G DM__I O_NewG DI nput Handl e(const char *nodul e_nane,
const char *nodul e fornmat_version, const char *io_creator);

G Dl nput _Handl e G DM__I O_NewG DI nput Handl e(const char *nodul e_nane,
const char *nodul e _format _version, const char *io_creator,const int

ndi ne) ;

G Dl nput _Handl e G DM__I O NewG DI nput Handl eW t hMeshNodes(const char
*nmodul e_nane, const char *nodul e fornmat _version, const char *io_creator,
const int ndine,const int numnodes, double *coords);

G Dl nput _Handl e G DM__I O_NewG DI nput Handl eW t hBoundar yFaces(const char
*modul e_name, const char *nodul e fornmat_version, const char *io_creator,
const int ndine,const int num nodes, double *coords, const int

num faces, int *faces, const Elemlype type faces nesh, const int nnode);
G Dl nput _Handl e G DM__I O NewG DI nput Handl eW t hVol umreMesh(const char
*nmodul e_nane, const char *nodul e_format _version, const char *io_creator,
const int ndinme, const int num nodes, double *coords, const int
num el ements, int *el ens, const El enType nesh_elemtype, const int
nnode) ;

void G DM__| O Del et eG DI nput Handl e(G DI nput _Handl e &hdl _gi n);

/1 DANGER FUNCTI ON: ONLY TO BE USED | F THE CONTENT OF G DI NPUT CONTENT IS
CREATED USI NG ' NEW

void G DM__| O Del et eG DI nput Cont ent (G Dl nput _Handl e &hdl _gin);

GiDML_IO_NewGiDInputHandle

There are three declarations of this function, depending on the parameters provided:
Declaration:

® GiDInput_Handle GiDML_IO_NewGiDInputHandle(const GiDInput_Handle hdl_gin);

¢ GiDInput_Handle GiDML_IO_NewGiDInputHandle(const char *module_name, const char
*module_format_version, const char *io_creator);

¢ GiDInput_Handle GiDML_IO_NewGiDInputHandle(const char *module_name, const char
*module_format_version, const char *io_creator,const int ndime);

Definition:

All these functions create the GiDInput structure, and fill it with the data corresponding to the parameters
provided.

Parameters:

All these functions return the GiDInput_Handle of the GiDInput structure created.

The first one receives a GiDInput_Handle, and fill the created GiDInput with a copy of the data from this one.
The second one receives as parameters the module name (const char*), module format version (const char*)
and the data creator (const char*), and the third one receives also the dimension of the mesh data (const int
ndime).

GIDML_10O_NewGiDInputHandleWithNodes

Declaration:

GiDInput_Handle GiDML_IO_NewGiDInputHandleWithNodes(const char *module_name, const char
*module_format_version, const char *io_creator, const int ndime,const int num_nodes, double *coords);
Definition:

This function creates the GiDInput structure, and fill it with the nodes coordinates.

Parameters:

The function returns the GiDInput_Handle of the created GiDInput structure, and receives the following
parameters as input:

module_name: this is the name of the GiDML module (const char*)

module_format_version: this is the format version of the module (const char*)

io_creator: this is the identifier of the data creator (const char*)

ndime: the dimension of the mesh (const int)

num_nodes: the number of nodes (const int)

coords: the coordinates of the nodes (double*), which is an array of length equal to ndime*num_nodes.

GiDML_IO_NewGiDInputHandleWithFaces

Declaration:

GiDInput_Handle GiDML_IO_NewGiDInputHandleWithFaces(const char *module_name, const char
*module_format_version, const char *io_creator, const int ndime,const int num_nodes, double *coords, const int
num_faces, int *faces, const ElemType elem_type_ faces, const int nnode);

Definition:

This function creates the GiDInput structure, and fill it with the nodes coordinates and faces connectivities.
Parameters:

The function returns the GiDInput_Handle of the created GiDInput structure, and receives the following
parameters as input:

module_name: this is the name of the GiDML module (const char*)

module_format_version: this is the format version of the module (const char*)

io_creator: this is the identifier of the data creator (const char*)

ndime: the dimension of the mesh (const int)

num_nodes: the number of nodes (const int)

coords: the coordinates of the nodes (double*), which is an array of length equal to ndime*num_nodes.
num_faces: the number of faces (const int)

faces: the connectivities of the faces (int*). This is an array of length equal to num_faces*nnode
elem_type faces: the element type of the faces (const ElemType)

nnode: the number of nodes each face has (const int)

GiDML_IO_NewGiDInputHandleWithVolumeElements

Declaration:

GiDInput_Handle GiDML_IO_NewGiDInputHandleWithVolumeElements(const char *module_name, const char
*module_format_version, const char *io_creator, const int ndime,const int num_nodes, double *coords, const int
num_elements, int *elems,const ElemType elem_type_elems, const int nnode);

Definition:

This function creates the GiDInput structure, and fill it with the nodes coordinates and volume elements
connectivities.

Parameters:

The function returns the GiDInput_Handle of the created GiDInput structure, and receives the following
parameters as input:

module_name: this is the name of the GiDML module (const char*)

module_format_version: this is the format version of the module (const char*)

io_creator: this is the identifier of the data creator (const char*)

ndime: the dimension of the mesh (const int)

num_nodes: the number of nodes (const int)

coords: the coordinates of the nodes (double*), which is an array of length equal to ndime*num_nodes.
num_elements: the number of volume elements (const int)

elems: the connectivities of the elements (int*). This is an array of length equal to num_elements*nnode
elem_type_elems: the element type of the volume elements (const ElemType)

21

® nnode: the number of nodes each volume element has (const int)

GiDML_IO_DeleteGiDInputHandle

Declaration:

void GIDML_10_DeleteGiDInputHandle(GiDInput_Handle &hdl_gin);

Definition:

This function deletes the GiDInput structure of the handle hdl_gin. In case some of the data inside the GiDInput
is created by the GiDMeshLibrary, it is also deleted. This is the case, for instance, of the data created when
reading from a file (see Write and Read using files). This is not the case of the data created outside the
GiDMeshLibrary and put inside the GiDInput using the API functions of GIDML_IO module. The handle is set to
NULL after being deleted.

Parameters:

This function receives a reference to the GiDInput handle (hdl_gin), which is set to NULL after calling the
function.

GiDML_IO_DeleteGiDInputContent

Declaration:

void GiDML_IO_DeleteGiDInputContent(GiDInput_Handle &hdl_gin);

Definition:

This function deletes the content of the GiDInput structure of the handle. It has to be considered that only the
content (the arrays of int's and double's) are deleted, but not the data structure. For deleting it the function GiDM
L_I0_DeleteGiDInputHandle must be called.

NOTE: the content data (which are arrays) will be deleted using the c++ delete[] operator. In case the content
has been created outside the GiD Mesh Library, make sure that it has been created with new operator.
Parameters:

This function receives as a parameter a reference of the handle (hdl_gin).

GiDOutput

GiDML_IO_NewGiDOutputHandle

There are two declarations of this function, depending on the parameters provided:
Declaration:

¢ GiDOutput_Handle GiDML_I0_NewGiDOutputHandle(const GiDOutput_Handle hdl_gout);
¢ GiDOutput_Handle GiDML_I0O_NewGiDOutputHandle();

Definition:
All these functions create the GiDOutput structure, and fill it with the data corresponding to the parameters
provided.

Parameters:
All these functions return the GiDOutput_Handle of the GiDOutput structure created. In the case of providing
with the hdl_gout parameter, the data of the new GiDOutput structure created is copied from it.

GiDML_IO_DeleteGiDOutputHandle

Declaration:

void GIDML_10_DeleteGiDOutputHandle(GiDOutput_Handle& hdl_gout);

Definition:

This function deletes the GiDOutput structure of the handle hdl_gin. In case some the data inside the GiDOutput
is created by the GiDMeshLibrary, it is also deleted. This is the case, for instance, of the data created when
reading from a file (see Write and Read using files). The handle is set to NULL after being deleted.

Parameters:

This function receives a reference to the GiDOutput handle (hdl_gout), which is set to NULL after calling the
function.

https://cimneprepost.atlassian.net/wiki/spaces/GMLD/pages/13772440/Write+and+Read+using+files
https://cimneprepost.atlassian.net/wiki/spaces/GMLD/pages/13785699/GiDInput
https://cimneprepost.atlassian.net/wiki/spaces/GMLD/pages/13785699/GiDInput
https://cimneprepost.atlassian.net/wiki/spaces/GMLD/pages/13772440/Write+and+Read+using+files

22

GiDOutput>GiDML_IO_DeleteGiDOutputContent

Declaration:
void GIDML_10_DeleteGiDOutputContent(GiDOutput_Handle hdl_gout);

Definition:

This function deletes the content of the GiDOutput structure of the handle. It has to be considered that only the
content (the arrays of int's and double's) are deleted, but not the data structure. For deleting it the function GiDM
L_I0_DeleteGiDOutputHandle must be called.

NOTE: the content data (which are arrays) will be deleted using the c++ delete[] operator. In case the content
has been created outside the GiD Mesh Library, make sure that it has been created with new operator.

It has to be considered that ,typically, the data inside the GiDOutput structure has been created by a specific
GiDML module. In most cases, the corresponding GiDML module will provide in its API with the function
GiDML_ModuleName_DeleteOutputContent (see DeleteGiDOutputContent).

Parameters:
This function receives as a parameter a reference of the handle (hdl_gout).

Callback functions

//**

/] Cal | back functions
//**
//callback to be raised to provide the main programinformation of
current status

/1(e.g. to show advance bar and cancel process, or print nmessages in
consol e)

void G DM__| O Set Cal | backSt at us(G DI nput _Handl e& hdl _gin, void* fn,void*
client_data);

void G DM__I| O Get Cal | backSt at us(const G Dl nput _Handl e& hdl _gi n, voi d*&
fn,void*& client_data);

void G DML_I O _Set Cal | backError (G DI nput _Handl e& hdl _gin, voi d* fn, voi d*
client _data);

void G DM__| O Get Cal | backError(const G DI nput _Handl e& hdl _gi n, voi d*&
fn,void*& client_data);

GiDML_IO_SetCallbackStatus

Declaration:

void GIDML_10O_SetCallbackStatus(GiDInput_Handle& hdl_gin, void *fn,void* client_data);

Definition:

This function sets a function that will be called by the library while the meshing process, to allow provide some
feedback to the final user of the current status of the process. The program that uses the library could set them
for example to print in console status messages, to show a percent advance bar, etc, and also to allow cancel

the meshing from this advance bar

Parameters:

The input parameter for the function is the handle of the GiDInput that will store it, the void* fn pointer to the
callback function, and a void* client_data pointer to some extra data to be used by the callback function (that
could be NULL if no extra data is needed)

Example:

https://cimneprepost.atlassian.net/wiki/spaces/GMLD/pages/13785797/GiDOutput
https://cimneprepost.atlassian.net/wiki/spaces/GMLD/pages/13785797/GiDOutput
https://cimneprepost.atlassian.net/wiki/spaces/GMLD/pages/13782074/Common+functions

23

A Module like GiDML_OctreeTetrahedraMesher could implement the status callback in this way:

//define the prototype of the callback function
typedef int (OctreeMesher Call back_Status) (const double
per cent age, const int nnodes, const int nelens,void* client_data);

voi d CctreeMesher:: Set Cal | back() {
CctreeMesher _Cal | back _Status* fn_status=NULL;
voi d* client data_status=NULL;
G DML_I O Get Cal | backSt at us(hdl _gi n, (voi d*
& fn_status,client_data status);
//store fn_status and client_data _status in variable of the class
octree_stat eproc=fn_stat us;
octree_clientdatastate=client_data_status;
return;

}

int CctreeMesher:: ProgressBar() {
i nt cancel =0;

/'l'invoke the call back

const int
user st op=oct ree_st at eproc(per cent age_done, nnodes, nel ens, octree_cl i ent dat
astate);

i f(userstop) return -1;

return cancel ;

In the final client of the library GIDML_OctreeTetrahedraMesher implement the callback to show and advance

bar

https://cimneprepost.atlassian.net/wiki/display/GMLD/GiDML_OctreeTetrahedraMesher
https://cimneprepost.atlassian.net/wiki/display/GMLD/GiDML_OctreeTetrahedraMesher

24

/ldefine a function with the sane prototype of the previous typedef
i nt Wil eCctreeMesher Cal | back(const doubl e percentage, const int nnodes,
const int nelens,void* client_data) {

i nt
user st op=ShowAdvanceBar AndAl | owCancel (per cent age, nnodes, nel ens, cl i ent _da
ta);

return userstop;

}

voi d Set MyCal | back() {
//set the status callback function pointing to the client definition

G DML_I| O _Set Cal | backSt at us(gi nput _handl e, (voi d*) Whi | eCct r eeMesher Cal | bac
k, (voi d*) &m nfo_vol);

}

GiDML_IO_GetCallbackStatus

Declaration:

void GIDML_10_GetCallbackStatus(const GiDInput_Handle& hdl_gin,void*& fn,void*& client_data);
Definition:

This function return in fn the pointer of the current status callback and in client_data the pointer to extra data
Parameters:

The input parameter for the function is the handle of the GiDInput that store the data

The output parametes are the void*& fn pointer to get the callback function, and a void&* client_data pointer to
get the extra data to be used by the callback function

GiDML_IO_SetCallbackError

Declaration:

void GIDML_10O_SetCallbackError(GiDInput_Handle& hdl_gin,void* fn,void* client_data);

Definition:

It is similar to GIDML_IO_SetCallbackStatus but to invoke a callback function with an error is detected by the
library.

The client program could for example implement it to show some error message
Parameters:

Similar to GiDML_IO_SetCallbackStatus

GiDML_IO_GetCallbackError

Declaration:

void GIDML_10O_GetCallbackError(const GiDInput_Handle& hdl_gin,void*& fn,void*& client_data);
Definition:

It is similar to GIDML_IO_GetCallbackStatus but to handle a callback function for errors instead of status
Parameters:

Similar to GIDML_IO_GetCallbackStatus
Mesh definition

Mesh dimension

GiDML_IO_GetMeshDimension

Declaration:

int GIDML_10_GetMeshDimension(const GiDIO_Handle hdl);

Definition:

This function returns with the dimension of the mesh present in the GiDInput or GiDOutput structure (typically 2
or 3). Itis an integer.

Parameters:

The input parameter for the function is the handle of the GiDInput or GiDOutput structure 'hdl'.

GiDML_IO_SetMeshDimension

Declaration:

void GIDML_10_SetMeshDimension(const GiDIO_Handle hdl,const int dimension);
Definition:

This function set the mesh dimension of the data in the GiDInput or GiDOutput of the handle.

Parameters:
The input parameters for the function are the handle of the GiDInput or GiDOutput structure 'hdl' and the

dimension (const int).
Mesh nodes

void G DM__| O _Set NodesCoords(G DI O Handl e hdl, const int num nodes,

doubl e *coords);

int G DM._I O Get NodesCoords(const G DI O Handl e hdl _gin, double
*&coords);

int G DM__I O Get Nunber Of Nodes(const G DI O Handl e hdl);

void G DM__| O Set Nunber Of Nodes(G DI O Handl e hdl, const int num nodes);
void G DM__I O Del et eNodes(G DI O Handl e hdl);

/1 DANGER FUNCTI ON: ONLY TO BE USED | F THE CONTENT OF G DOUPUT CONTENT IS
CREATED USI NG ' NEW

void G DML_I O Del et eNodesCont ent (G DI O Handl e *hdl _gi 0);

GiDML_IO_SetNodesCoords

Declaration:

void GIDML_10_SetNodesCoords(GiDIO_Handle hdl,const int num_nodes, double *coords);
Definition:

This function introduces the array of nodes coordinates into the GiDInput or GiDOutput structure.
Parameters:

The function receives as parameters:

® The handle of the GiDInput or GiDOutput structure (GiDIO_Handle hdl)

® The number of nodes (const int num_nodes)

®* The array of coordinates (double *coords). The length of the coordinates array is equal to
num_nodes*ndim (where ndim is the dimension of the mesh set using GiDML_IO_SetMeshDimension fun
ction defined in Mesh dimension).

25

https://cimneprepost.atlassian.net/wiki/spaces/GMLD/pages/13786351/Mesh+dimension

26

GiDML_IO_GetNodesCoords

Declaration:

int GIDML_10_GetNodesCoords(const GiDIO_Handle hdl, double *&coords);

Definition:

This function provides with the array of coordinates of the nodes.

Parameters:

It receives as input the handle of GiDInput or GiDOutput structure (hdl), and return the coordinates array in a
double *.

The function returns 0 (int) if everything is ok.

GiDML_IO_GetNumberOfNodes

Declaration:

int GIDML_10_GetNumberOfNodes(const GiDIO_Handle hdl);

Definition:

This function provides with the number of nodes in the GiDInput or GiDOutput structure of the handle.
Parameters:

The function receives as input parameter the handle (hdl), and return the number of nodes in an integer.

GiDML_IO_SetNumberOfNodes

Declaration:

void GIDML_10_SetNumberOfNodes(GiDIO_Handle hdl,const int num_nodes);

Definition:

This function set the number of nodes in the GiDInput or GiDOutput structure of the handle.
Parameters:

The input parameters are the handle (iDIO_Handle hdl) and the number of nodes (const int num_nodes).

GiDML_IO_DeleteNodes

Declaration:

void GIDML_10_DeleteNodes(GiDIO_Handle hdl);

Definition:

This function deletes the Nodes structure inside the GiDInput or GiDoutput structure of the handle. In case the
data of the nodes (coordinates and possible attributes) has been filled by the GiD Mesh Library, it is also
deleted. In case the arrays of data has been created outside the GiD Mesh Library, they are not deleted, and
have to be deleted by the one who has created them.

Parameters:

The function receives as parameter the handle (GiDIO_Handle hdl) of the GiDInput or GiDOutput structure.

GiDML_IO_DeleteNodesContent

Declaration:

void GiDML_IO_DeleteNodesContent(GiDIO_Handle *hdl);

Definition:

This function deletes the content of the Nodes structure of GiDInput or GiDOutput of the handle. It has to be
considered that only the content (the arrays of int's and double's) are deleted, but not the data structure. For
deleting it the function GIiDML_10_DeleteNodes must be called.

NOTE: the content data (which are arrays) will be deleted using the c++ delete[] operator. In case the content
has been created outside the GiD Mesh Library, make sure that it has been created with new operator.
Parameters:

This function receives as a parameter a reference of the handle (hdl_gin).

Mesh edges

27

GIDML_IO_SetEdges

Declaration:
There are two possible options for this function:

® void GiDML_IO_SetEdges(GiDIO_Handle hdl,int num_edges,int* connectivities, const int n_elem_types,
ElemType* etypes, int* nnodes, int* n_elems_by_type);

® void GiDML_IO_SetEdges(GiDIO_Handle hdl,const int num_edges,int* connectivities, const ElemType
etype, const int nnode);

Definition:

As explained in Elements, there can be different element types in the edges definition. The first declaration of
the function is used to include the information of edges into the GiDInput or GiDOutput structures when there are
more than one element type, and the second, when there is only one element type (common situation, which
reduces the number of input parameters).

Parameters:

GIiDIO_Handle hdl: handle of the GiDInput or GiDOutput structure.

const int num_edges: the number of edges.

int* connectivities: the array of connectivities of the edges.

const int n_elem_types: the number of different element types to be included in the GiDInput or

GiDOutput structure.

®* ElemType* etypes: the array of the different element types to be included. It is an array of length equal to
n_elem_types.

® int* nnodes: the array defining the number of nodes per element for the different element types included.
It is an array of length equal to n_elem_types.

® int* n_elems_by type: the array defining the number of elements for each element type to be included. It

is an array of length equal to n_elem_types.

For the second definition of the function, only the element type (const ElemType etype) and the number of nodes
for element type (const int nnode) is needed (apart from the hdl, num_edges and connectivities).

GiDML_IO_GetEdges
Declaration:
There are two possible options for this function:

® int GiDML_IO_GetEdges(const GiDIO_Handle hdl, int*& connec, ElemType*& etypes, int*& nnodes, int*&
n_elems_by type);
® int GIDML_IO_GetEdges(const GiDIO_Handle hdl, int*& connec);

Definition:

As explained in Elements, there can be different element types in the elements definition. The first declaration of
the function is used to get the complete information about the elements present in the GiDInput or GiDOutput
structure of the handle. In the case of knowing that there is only one element type, the second function can be
used for sake of simplicity.

Parameters:

¢ GiDIO_Handle hdl: handle of the GiDInput or GiDOutput structure.

® int* connectivities: the array of connectivities of the edges.

®* ElemType* etypes: the array of the different element types to be included. It is an array of length equal to
n_elem_types.

https://cimneprepost.atlassian.net/wiki/spaces/GMLD/pages/13772416/Elements
https://cimneprepost.atlassian.net/wiki/spaces/GMLD/pages/13772416/Elements

28

® int* nnodes: the array defining the number of nodes per element for the different element types included.
Itis an array of length equal to n_elem_types.

® int* n_elems_by_type: the array defining the number of elements for each element type to be included. It
is an array of length equal to n_elem_types.

GIiDML_IO_GetNumberOfEdges

Declaration:

int GIDML_10_GetNumberOfEdges(const GiDIO_Handle hdl);

Definition:

This function returns the number of edges present in the GiDInput or GiDOutput of the handle.

Parameters:

The input parameter for the function is the handle of the GiDInput or GiDOutput structure (const GiDIO_Handle
hdl).

GiDML_IO_GetNumberOfElementTypesinEdges

Declaration:

int GIDML_IO_GetNumberOfElementTypesinEdges(const GiDIO_Handle hdl);

Definition:

This function provides with the number of different element types of the edges present in the GiDInput or
GiDOutput structure of the handle.

Parameters:

The input parameter for the function is the handle of the GiDInput or GiDOutput structure (const GiDIO_Handle
hdl).

GiDML_IO_DeleteEdges

Declaration:

void GiDML_IO_DeleteEdges(GiDIO_Handle hdl);

Definition:

This function deletes the Edges structure inside the GiDInput or GiDoutput structure of the handle. In case the
data of the edges (connectivities, element type information and possible attributes or markers) has been filled by
the GiD Mesh Library, it is also deleted. In case the arrays of data has been created outside the GiD Mesh
Library, they are not deleted, and have to be deleted by the one who has created them.

Parameters:

The function receives as parameter the handle (GiDIO_Handle hdl) of the GiDInput or GiDOutput structure.

GiDML_IO_DeleteEdgesContent

Declaration:

void GIDML_10_DeleteEdgesContent(GiDIO_Handle& hdl);

Definition:

This function deletes the content of the Edges structure of GiDInput or GiDOutput of the handle. It has to be
considered that only the content (the arrays of int's and double's) are deleted, but not the data structure. For
deleting it the function GIDML_IO_DeleteEdges must be called.

NOTE: the content data (which are arrays) will be deleted using the c++ delete[] operator. In case the content
has been created outside the GiD Mesh Library, make sure that it has been created with new operator.
Parameters:

This function receives as a parameter a reference of the handle (hdl_gin).

Mesh faces

GiDML_IO_SetFaces

Declaration:
There are two possible options for this function:

29

void GIDML_10_SetFaces(GiDIO_Handle hdl,int num_faces,int* connectivities, const int n_elem_types,
ElemType* etypes, int* nnodes, int* n_elems_by_type);

void GIDML_10_SetFaces(GiDIO_Handle hdl,const int num_faces,int* connectivities, const ElemType
etype, const int nnode);

Definition:

As explained in Elements, there can be different element types in the faces definition. The first declaration of the
function is used to include the information of faces into the GiDInput or GiDOutput structures when there are
more than one element type, and the second, when there is only one element type (common situation, which
reduces the number of input parameters).

Parameters:

GiDIO_Handle hdl: handle of the GiDInput or GiDOutput structure.

const int num_faces: the number of faces.

int* connectivities: the array of connectivities of the faces.

const int n_elem_types: the number of different element types to be included in the GiDInput or
GiDOutput structure.

ElemType* etypes: the array of the different element types to be included. It is an array of length equal to
n_elem_types.

int* nnodes: the array defining the number of nodes per element for the different element types included.
It is an array of length equal to n_elem_types.

int* n_elems_by_type: the array defining the number of elements for each element type to be included. It
is an array of length equal to n_elem_types.

For the second definition of the function, only the element type (const ElemType etype) and the number of nodes
for element type (const int nnode) is needed (apart from the hdl, num_faces and connectivities).

GiDML_IO_GetFaces

Declaration:

There are two possible options for this function:

int GIDML_10O_GetFaces(const GiDIO_Handle hdl, int*& connec, ElemType*& etypes, int*& nnodes, int*&
n_elems_by type);
int GIDML_1O_GetFaces(const GiDIO_Handle hdl, int*& connec);

Definition:

As explained in Elements, there can be different element types in the elements definition. The first declaration of
the function is used to get the complete information about the elements present in the GiDInput or GiDOutput
structure of the handle. In the case of knowing that there is only one element type, the second function can be
used for sake of simplicity.

Parameters:

¢ GiDIO_Handle hdl: handle of the GiDInput or GiDOutput structure.
® int* connectivities: the array of connectivities of the faces.
* ElemType* etypes: the array of the different element types to be included. It is an array of length equal to

n_elem_types.

int* nnodes: the array defining the number of nodes per element for the different element types included.
It is an array of length equal to n_elem_types.

int* n_elems_by_type: the array defining the number of elements for each element type to be included. It

https://cimneprepost.atlassian.net/wiki/spaces/GMLD/pages/13772416/Elements
https://cimneprepost.atlassian.net/wiki/spaces/GMLD/pages/13772416/Elements

30

is an array of length equal to n_elem_types.

GIiDML_IO_GetNumberOfFaces

Declaration:

int GIDML_10_GetNumberOfFaces(const GiDIO_Handle hdl);

Definition:

This function returns the number of faces present in the GiDInput or GiDOutput of the handle.

Parameters:

The input parameter for the function is the handle of the GiDInput or GiDOutput structure (const GiDIO_Handle
hdl).

GiDML_IO_GetNumberOfElementTypesinFaces

Declaration:

int GIDML_10_GetNumberOfElementTypesinFaces(const GiDIO_Handle hdl);

Definition:

This function provides with the number of different element types of the faces present in the GiDInput or
GiDOutput structure of the handle.

Parameters:

The input parameter for the function is the handle of the GiDInput or GiDOutput structure (const GiDIO_Handle
hdl).

GiDML_IO_DeleteFaces

Declaration:

void GIDML_10O_DeleteFaces(GiDIO_Handle hdl);

Definition:

This function deletes the Faces structure inside the GiDInput or GiDoutput structure of the handle. In case the
data of the faces (connectivities, element type information and possible attributes or markers) has been filled by
the GiD Mesh Library, it is also deleted. In case the arrays of data has been created outside the GiD Mesh
Library, they are not deleted, and have to be deleted by the one who has created them.

Parameters:

The function receives as parameter the handle (GiDIO_Handle hdl) of the GiDInput or GiDOutput structure.

GiDML_IO_DeleteFacesContent

Declaration:

void GiDML_IO_DeleteFacesContent(GiDIO_Handle& hdl);

Definition:

This function deletes the content of the Faces structure of GiDInput or GiDOutput of the handle. It has to be
considered that only the content (the arrays of int's and double's) are deleted, but not the data structure. For
deleting it the function GiDML_10O_DeleteFaces must be called.

NOTE: the content data (which are arrays) will be deleted using the c++ delete[] operator. In case the content
has been created outside the GiD Mesh Library, make sure that it has been created with new operator.
Parameters:

This function receives as a parameter a reference of the handle (hdl_gin).

Mesh elements

GiDML_IO_SetElements

Declaration:
There are two possible options for this function:

® void GiDML_IO_SetElements(GiDIO_Handle hdl,int num_elems,int* connectivities, const int
n_elem_types, ElemType* etypes, int* nnodes, int* n_elems_by _type);

31

® void GiDML_IO_SetElements(GiDIO_Handle hdl,const int num_elems,int* connectivities, const ElemType
etype, const int nnode);

Definition:

As explained in Elements, there can be different element types in the elements definition. The first declaration of
the function is used to include the information of elements into the GiDInput or GiDOutput structures when there
are more than one element type, and the second, when there is only one element type (common situation, which
reduces the number of input parameters).

Parameters:

GiDIO_Handle hdl: handle of the GiDInput or GiDOutput structure.

const int num_elems: the number of elements.

int* connectivities: the array of connectivities of the elements.

const int n_elem_types: the number of different element types to be included in the GiDInput or

GiDOutput structure.

* ElemType* etypes: the array of the different element types to be included. It is an array of length equal to
n_elem_types.

® int* nnodes: the array defining the number of nodes per element for the different element types included.
It is an array of length equal to n_elem_types.

® int* n_elems_by_type: the array defining the number of elements for each element type to be included. It

is an array of length equal to n_elem_types.

For the second definition of the function, only the element type (const ElemType etype) and the number of nodes
for element type (const int nnode) is needed (apart from the hdl, num_elems and connectivities).

GiDML_IO_GetElements

Declaration:
There are two possible options for this function:

® int GiDML_IO_GetElements(const GiDIO_Handle hdl, int*& connec, ElemType*& etypes, int*& nnodes,
int*& n_elems_by_type);
® int GiDML_IO_GetElements(const GiDIO_Handle hdl, int*& connec);

Definition:

As explained in Elements, there can be different element types in the elements definition. The first declaration of
the function is used to get the complete information about the elements present in the GiDInput or GiDOutput
structure of the handle. In the case of knowing that there is only one element type, the second function can be
used for sake of simplicity.

Parameters:

¢ GiDIO_Handle hdl: handle of the GiDInput or GiDOutput structure.

® int* connectivities: the array of connectivities of the elements.

®* ElemType* etypes: the array of the different element types to be included. It is an array of length equal to
n_elem_types.

® int* nnodes: the array defining the number of nodes per element for the different element types included.
It is an array of length equal to n_elem_types.

® int* n_elems_by_type: the array defining the number of elements for each element type to be included. It
is an array of length equal to n_elem_types.

GiDML_IO_GetNumberOfElements

Declaration:

https://cimneprepost.atlassian.net/wiki/spaces/GMLD/pages/13772416/Elements
https://cimneprepost.atlassian.net/wiki/spaces/GMLD/pages/13772416/Elements

32

int GIDML_10_GetNumberOfElements(const GiDIO_Handle hdl);

Definition:

This function returns the number of elements present in the GiDInput or GiDOutput of the handle.

Parameters:

The input parameter for the function is the handle of the GiDInput or GiDOutput structure (const GiDIO_Handle
hdl).

GiDML_IO_GetNumberOfElementTypesinElements

Declaration:

int GIDML_10_GetNumberOfElementTypesIinElements(const GiDIO_Handle hdl);

Definition:

This function provides with the number of different element types of the elements present in the GiDInput or
GiDOutput structure of the handle.

Parameters:

The input parameter for the function is the handle of the GiDInput or GiDOutput structure (const GiDIO_Handle
hdl).

GiDML_IO_DeleteElements

Declaration:

void GiDML_IO_DeleteElements(GiDIO_Handle hdl);

Definition:

This function deletes the Elements structure inside the GiDInput or GiDoutput structure of the handle. In case
the data of the elements (connectivities, element type information and possible attributes or markers) has been
filled by the GiD Mesh Library, it is also deleted. In case the arrays of data has been created outside the GiD
Mesh Library, they are not deleted, and have to be deleted by the one who has created them.

Parameters:

The function receives as parameter the handle (GiDIO_Handle hdl) of the GiDInput or GiDOutput structure.

GiDML_IO_DeleteElementsContent

Declaration:

void GIDML_10O_DeleteElementsContent(GiDIO_Handle& hdl);

Definition:

This function deletes the content of the Elements structure of GiDInput or GiDOutput of the handle. It has to be
considered that only the content (the arrays of int's and double's) are deleted, but not the data structure. For
deleting it the function GIiDML_IO_DeleteElements must be called.

NOTE: the content data (which are arrays) will be deleted using the c++ delete[] operator. In case the content
has been created outside the GiD Mesh Library, make sure that it has been created with new operator.
Parameters:

This function receives as a parameter a reference of the handle (hdl_gin).

Generic elements
As explained in Elements, edges, faces and elements share the same structure. Some API functions are present

in this section to be calles with 'generic elements' (edges, faces or elements), just indicating the type of them in
an input parameter (see Type of entity).

GiDML_IO_SetGenericElements

There are two possible options for this function:

® void GiDML_IO_SetGenericElements(GiDIO_Handle hdl,const GIDML_TYPE_OF_ENTITY type,int
num_elems, int* connectivities, const int n_elem_types, ElemType* etypes, int* nnodes, int*
n_elems_by type);

https://cimneprepost.atlassian.net/wiki/spaces/GMLD/pages/13772416/Elements
https://cimneprepost.atlassian.net/wiki/spaces/GMLD/pages/13834704/Type+of+entity

33

® void GiDML_IO_SetGenericElements(GiDIO_Handle hdl,const GIDML_TYPE_OF_ENTITY type, const int
num_elems,int* connectivities, const ElemType etype, const int nnodes);

Definition:

As explained in Elements, there can be different element types in the generic elements definition. The first
declaration of the function is used to include the information of generic elements into the GiDInput or GiDOutput
structures when there are more than one element type, and the second, when there is only one element type
(common situation, which reduces the number of input parameters).

Of course, one can also use the first declaration when only one element type is considered. The second
declaration is only for simplification purposes.

Parameters:

GiDIO_Handle hdl: handle of the GiDInput or GiDOutput structure.

const GIDML_TYPE_OF_ENTITY type: the type of generic element considered.

const int num_elems: the number of generic elements.

int* connectivities: the array of connectivities of the generic elements.

const int n_elem_types: the number of different generic element types to be included in the GiDInput or

GiDOutput structure.

®* ElemType* etypes: the array of the different generic element types to be included. It is an array of length
equal to n_elem_types.

® int* nnodes: the array defining the number of nodes per generic element for the different element types
included. It is an array of length equal to n_elem_types.

® int* n_elems_by_type: the array defining the number of generic elements for each element type to be

included. It is an array of length equal to n_elem_types.

For the second definition of the function, only the element type (const ElemType etype) and the number of nodes
for element type (const int nnode) is needed (apart from the hdl, num_elems and connectivities).

GiDML_IO_GetGenericElements
Declaration:
There are two possible options for this function:

® int GiDML_IO_GetGenericElements(const GiDIO_Handle hdl, const GIDML_TYPE_OF _ENTITY type,
int*& connec, ElemType*& etypes, int*& nnodes, int*& n_elems_by type);

® int GiDML_IO_GetGenericElements(const GiDIO_Handle hdl, const GIDML_TYPE_OF _ENTITY type,
int*& connec);

Definition:

As explained in Elements, there can be different element types in the elements definition. The first declaration of
the function is used to get the complete information about the elements present in the GiDInput or GiDOutput
structure of the handle. In the case of knowing that there is only one element type, the second function can be
used for sake of simplicity.

Parameters:

GiDIO_Handle hdl: handle of the GiDInput or GiDOutput structure.

const GIDML_TYPE_OF_ENTITY type: the type of generic element considered.

int* connectivities: the array of connectivities of the elements.

ElemType* etypes: the array of the different element types to be included. It is an array of length equal to

n_elem_types.

® int* nnodes: the array defining the number of nodes per element for the different element types included.
It is an array of length equal to n_elem_types.

® int* n_elems_by_type: the array defining the number of elements for each element type to be included. It

is an array of length equal to n_elem_types.

https://cimneprepost.atlassian.net/wiki/spaces/GMLD/pages/13772416/Elements
https://cimneprepost.atlassian.net/wiki/spaces/GMLD/pages/13772416/Elements

34

GiDML_IO_GetNumberOfGenericElements

Declaration:

int GIDML_10_GetNumberOfGenericElements(const GiDIO_Handle hdl, const GIDML_TYPE_OF _ENTITY
type);

Definition:

This function returns the number of generic elements (edges, faces or elements) present in the GiDInput or
GiDOutput of the handle.

Parameters:

The input parameters for the function are the handle of the GiDInput or GiDOutput structure (const
GIiDIO_Handle hdl) and the type of element considered (const GIDML_TYPE_OF _ENTITY type)

GiDML_IO_GetNumberOfGenericElementTypes

Declaration:

int GIDML_10_GetNumberOfGenericElementTypes(const GiDIO_Handle hdl, const GIDML_TYPE_OF_ENTITY
type);

Definition:

This function provides with the number of different generic element types present in the GiDInput or GiDOutput
structure of the handle.

Parameters:

The input parameters for the function are the handle of the GiDInput or GiDOutput structure (const
GiDIO_Handle hdl) and the type of element considered (const GIDML_TYPE_OF_ENTITY type).

GiDML_IO_GetGenericElementType

Declaration:

ElemType GiDML_IO_GetGenericElementType(const GiDIO_Handle hdl,const GIDML_TYPE_OF _ENTITY
type, const int ipos);

Definition:

This function provides with a specific element type present in the GiDInput or GiDOutput structure of the handle.
Parameters:

The input parameters for the function are the handle of the GiDInput or GiDOutput structure (const
GIDIO_Handle hdl), the type of element considered (const GIDML_TYPE_OF_ENTITY type) and the position of
the element type consulted inside the etypes array (const int ipos). Note that ipos must be an integer between 0
(O included) and the number of generic element types (not included). This is: ipos>=0 and ipos<n_elem_types.

GiDML_IO_GetNNodeGenericElement

Declaration:

int GIDML_10_GetNNodeGenericElement(const GiDIO_Handle hdl,const GIDML_TYPE_OF_ENTITY type,
const int ipos);

Definition:

This function provides with the number of nodes for a specific element type present in the GiDInput or
GiDOutput structure of the handle.

Parameters:

The input parameters for the function are the handle of the GiDInput or GiDOutput structure (const
GiDIO_Handle hdl), the type of element considered (const GIDML_TYPE_OF_ENTITY type) and the position of
the element type consulted inside the etypes array (const int ipos). Note that ipos must be an integer between 0
(0 included) and the number of generic element types (not included). This is: ipos>=0 and ipos<n_elem_types.

Additional parameters

Parameters

35

GiDML_IO_SetParameter / GiDML_IO_SetParameterVector
Declaration:

This can be used following functions (the funcions with Vector suffix handle a vector (type int or double) instead
of a scalar (double)

® int GiDML_IO_SetParameter(GiDIO_Handle hdl, const char* parameter_name, double value);

® int GiDML_IO_SetParameter(GiDIO_Handle hdl, const char* parameter_name, int value);

® int GiDML_IO_SetParameterVector(GiDIO_Handle hdl,const char* parameter_name,double*
array_of_values,const int array_dimension);

® int GiDML_IO_SetParameterVector(GiDIO_Handle hdl,const char* parameter_name,int*
array_of_values,const int array_dimension);

Definition:

This function set a specific parameter with a unique name in the GiDInput or GiDOutput structure of the handle.
The two functions differ in the format of the parameter set (double or int). For the parameters (not parameter
vectors), whatever is the function used, inside GiDInput or GiDOutput struture, the value is stored in double
format. If the int function passing an int as a parameter is used, a casting is done to double internally.

Parameters:

GiDIO_Handle hdl: it is the handle of the GiDInput or GiDOutput structure

const char* parameter_name: it is an unique name to access to this parameter

double/int value: it is the value of the parameter.

in case of parameter vectors, also the dimension of the array (int array_dimension) is added.

GiDML_IO_GetParameter / GiDML_IO_GetParameterVector
Declaration:

® int GiDML_IO_GetParameter(const GiDIO_Handle hdl, const char* parameter_name, double& value);

® int GiDML_IO_GetParameterVector(const GiDIO_Handle hdl,const char* parameter_name,double*&
array_of_values,int& array_dimension);

® int GiDML_IO_GetParameterVector(const GiDIO_Handle hdl, const char* parameter_name,int*&
array_of_values, int& array_dimension)

Definition:

This function provides with the value of the parameter in a given position in the parameters array of the GiDInput
or GiDOutput structure of the handle.

Parameters:
The function recieves as input the following parameters:

¢ GiDIO_Handle hdl: it is the handle of the GiDInput or GiDOutput structure
® const char* parameter_name: it is an uniqgue name to access to this parameter

The value of the parameter or the array is returned in the variable 'value' or 'array_of values' (which is a
reference). In case of parametrer vector, also the array dimension is returned in the reference int&
array_dimension.

The function returns 0 if the parameter exists, and 1 if it does not exist.

GiDML_IO_GetNumberOfParameters

Declaration:

36

int GIDML_10O_GetNumberOfParameters(const GiDIO_Handle hdl);
Definition:

This function provides with the amount of parameters in GiDInput or GiDOutput structure.

Parameters:

This function receives as an input the handle (const GiDIO_Handle hdl), and returns the length of the array in
integer format.

GiDML_IO_ParameterExists

Declaration:
bool GIDML_10_ParameterExists(const GiDIO_Handle hdl, const char* parameter_name);
Definition:

This function indicates if a named parameter of the GiDInput or GiDOutput structure has been filled.
Parameters:

The function recieves as input the following parameters:

¢ GiDIO_Handle hdl: it is the handle of the GiDInput or GiDOutput structure
® const char* parameter_name: it is an unigue name to access to this parameter

The function returns 'true’ if the parameter exists (has been filled), or ‘false’ if not.

GiDML_IO_DeleteParametersContent

Declaration:

void GIDML_10_DeleteParametersContent(GiDIO_Handle hdl);

Definition:

This function release the memory resources used for all parameters of the GiDInput and GiDOutput structure of
the handle.

Parameters:

This function receives as an input the handle (const GiDIO_Handle hdl).
Attributes

As explained in 1/O Structures, there may be attributes assigned to Nodes, Edges, Faces and Elements. The API
functions present in this section receives the type of entity as a parameter to refer the proper attributes (see Typ
e of entity).

The attributes are an array of values, nowadays of type integer or double, with a value by entity. The amount of
values of the array must be the same as the amount of entities (e.g. the amount of nodes of the mesh it the
attribute has entity type==GIDML_NODE)

Attributes could be of two types: user and module.(GIDML_USER_ATTRIBUTE or
GIDML_MODULE_ATTRIBUTE)

® User attributes are transmitted from the input to the output in a 'neutral way', also if its meaning is
unknown by the mesh module.

®* Module attributes are not transmitted to the output, and usually have a meaning for the module to do
some action (e.g. input required mesh sizes)

GiDML_IO_CreateAttribute

Declaration:

void* GiDML_1O_CreateAttribute(GiDIO_Handle hdl,const char* attribute_name, void* attribute_array,
const GIDML_TYPE_OF_ENTITY entity_type,

https://cimneprepost.atlassian.net/wiki/spaces/GMLD/pages/13772378

37

const GIDML_TYPE_OF_ATTRIBUTE attribute_type,
const GIDML_TYPE_OF_VALUE value_type);
Definition:

This function creates an attribute_array corresponding to the unique name 'attribute_name'.
Parameters:

¢ GiDIO_Handle hdl: The handle of the GiDInput or GiDOutput structure

® const char* attribute_name: The unique name to access to the attribute

* GIDML_TYPE_OF_ENTITY entity_type: the type of entity the user attributes array refers to
(GIDML_NODE, GIDML_EDGE, GIDML_FACE, GIDML_ELEMENT)

* GIDML_TYPE_OF_ATTRIBUTE attribute_type: the category of attribute (GIDML_USER_ATTRIBUTE or
GIDML_MODULE_ATTRIBUTE)

¢ GIDML_TYPE_OF_VALUE value_type: the type of the array data (GIDML_TYPE_INTEGER,
GIDML_TYPE_DOUBLE)

The function returns a pointer to the attribute array.

GiDML_IO_SetAttribute

Declaration:

int GIDML_10_ SetAttribute(GiDIO_Handle hdl,const char* attribute_name, void* attribute_array,
const GIDML_TYPE_OF_ENTITY entity_type,

const GIDML_TYPE_OF_ATTRIBUTE attribute_type,

const GIDML_TYPE_OF_VALUE value_type);

Definition:

This function sets a given attribute array with an unique name. The attribute array is copied inside the GiDIO
structure.
Parameters:

¢ GiDIO_Handle hdl: The handle of the GiDInput or GiDOutput structure

® const char* attribute_name: The unique name to access to the attribute

® void* attribute_array: a pointer to the array values (double* or integer*). Its dimension is the number of
entities present in the corresponding entity type structure. For instance: if type=GIDML_NODE, the
dimension of this array is equal to the number of nodes.

®* GIDML_TYPE_OF_ENTITY entity type: the type of entity the user attributes array refers to
(GIDML_NODE, GIDML_EDGE, GIDML_FACE, GIDML_ELEMENT)

®* GIDML_TYPE_OF_ATTRIBUTE attribute_type: the category of attribute (GIDML_USER_ATTRIBUTE or
GIDML_MODULE_ATTRIBUTE)

® GIDML_TYPE_OF_VALUE value_type: the type of the array data (GIDML_TYPE_INTEGER,
GIDML_TYPE_DOUBLE)

GiDML_IO_GetAttribute

Declaration:

void* GIDML_IO_GetAttribute(GiDIO_Handle hdl,const char* attribute_name,const GIDML_TYPE_OF_ENTITY
entity _type);

Definition:

This function get the attribute with this name

Parameters:

The function recieves as input:

¢ GiDIO_Handle hdl: The handle of the GiDInput or GiDOutput structure
® const char* attribute_name: The unique name to access to the attribute
* GIDML_TYPE_OF_ENTITY entity_type: the type of entity the user attributes array refers to.

38

and returns the array of user attributes as void* (that really is a double* or a int*).

GiDML_IO_GetAttributeType
Declaration:

GIDML_TYPE_OF_VALUE GIDML_IO_GetAttributeType(GiDIO_Handle hdl,const char* attribute_name,const
GIDML_TYPE_OF_ENTITY entity_type);

Definition:

This function get the type of the attribute (integer or double) with this name

Parameters:

The function recieves as input:

¢ GiDIO_Handle hdl: The handle of the GiDInput or GiDOutput structure
® const char* attribute_name: The unique name to access to the attribute
®* GIiDML_TYPE_OF_ENTITY entity_type: the type of entity the user attributes array refers to.

and returns the type (GIDML_TYPE_INTEGER,GIDML_TYPE_DOUBLE)

GiDML_IO_DeleteAttribute

Declaration:

int GIDML_10_DeleteAttribute(GiDIO_Handle hdl,const char* attribute_name,const GIDML_TYPE_OF_ENTITY
entity _type);

Definition:

This function release the memory used by the attribute with the specified name
Parameters:

The function receives as input:

¢ GiDIO_Handle hdl: The handle of the GiDInput or GiDOutput structure
® const char* attribute_name: The unique name to access to the attribute
* GIDML_TYPE_OF_ENTITY entity_type: the type of entity the user attributes array refers to.

GiDML_IO_DeleteAttributesEntitiesVector

Declaration:

int GIDML_10_DeleteAttributesEntitiesVector(GiDIO_Handle hdl,const GIDML_TYPE_OF_ENTITY entity type);
Definition:

This function release the memory used by all attributes of the entity type, without require a loop over all its
names.

Parameters:
The function receives as input:

¢ GiDIO_Handle hdl: The handle of the GiDInput or GiDOutput structure
* GIDML_TYPE_OF_ENTITY entity_type: the type of entity the user attributes array refers to.

GiDML_IO_GetNumberOfAttributesThatMustBeTransmitted

Declaration:

int GIDML_10_GetNumberOfAttributesThatMustBeTransmitted(GiDIO_Handle hdl,const
GIDML_TYPE_OF_ENTITY entity_type);

39

Definition:

This function provides with the number of user attributes (the ones that must be transmitted to the output). It
allow to do a loop over the names of the user attributes

Parameters:
The function receives as input:

¢ GiDIO_Handle hdl: The handle of the GiDInput or GiDOutput structure
* GIDML_TYPE_OF_ENTITY entity_type: the type of entity the user attributes array refers to.

and returns the number of user attributes.

GiDML_IO_GetAttributeNameThatMustBeTransmitted

Declaration:

const char* GiDML_IO_GetAttributeNameThatMustBeTransmitted(GiDIO_Handle hdl,const
GIDML_TYPE_OF_ENTITY entity_type,const int i);

Definition:

This function provides with the name of the user attribute (the ones that must be transmitted to the output) from
its integer id

Parameters:
The function receives as input:

¢ GiDIO_Handle hdl: The handle of the GiDInput or GiDOutput structure
* GIDML_TYPE_OF_ENTITY entity_type: the type of entity the user attributes array refers to.
® inti: the integer id, from 0 to GIiDML_IO_GetNumberOfAttributesThatMustBeTransmitted

and returns the attribute string name.

Write and Read using files

GiDML_IO_WriteGiDInput

Declaration:

int GIDML_10_WriteGiDInput(const char* filename,const GiDInput_Handle hdl);

Definition:

This function writes the content of the GiDInput structure of the handle in a .gidml binary file (see Files).
Parameters:

The function receives as input parameters the name of the file to be created and filled with the data of the
GiDInput structure (it must be the complete name of the file, including the path), and the handle of it.

The function returns 0 if all the writing process has been ok, and 1 if it fails.

GiDML_IO_ReadGiDInput

Declaration:

int GIDML_IO_ReadGiDInput(const char* filename, GiDInput_Handle& hdl_gin);

Definition:

This function reads the content a .gidml file (see Files) and fill the GiDInput structure of the handle with this data.

https://cimneprepost.atlassian.net/wiki/spaces/GMLD/pages/13772341/Files
https://cimneprepost.atlassian.net/wiki/spaces/GMLD/pages/13772341/Files

40

Parameters:

The function receives as input parameters the name of the file to be read (it must be the complete name of the
file, including the path) and a reference to the handle of the GiDInput structure ('hgl_gin").

Note: hdl_gin must be NULL when calling the function. Inside the function it is created.

The function returns 0 if all the writing process has been ok, and 1 if it fails.

GiDML_IO_WriteGiDOutput

Declaration:

int GiDML_IO_WriteGiDOutput(const char* filename, const GiDOutput_Handle hdl_gout);

Definition:

This function writes the content of the GiDOutput structure of the handle in a .gidml binary file (see Files).
Parameters:

The function receives as input parameters the name of the file to be created and filled with the data of the
GiDOutput structure (it must be the complete name of the file, including the path), and the handle of it.
The function returns 0 if all the writing process has been ok, and 1 if it fails.

GiDML_IO_ReadGiDOutput

Declaration:

int GIDML_10_ReadGiDOutput(const char* filename, GiDOutput_Handle& hdl_gout);

Definition:

This function reads the content a .gidml file (see Files) and fill the GiDOutput structure of the handle with this
data.

Parameters:

The function receives as input parameters the name of the file to be read (it must be the complete name of the
file, including the path) and a reference to the handle of the GiDOutput structure (‘hgl_gout).

Note: hdl_gout must be NULL when calling the function. Inside the function it is created.

The function returns 0 if all the writing process has been ok, and 1 if it fails.

GiDML_IO_WriteGiDInputAndGiDOutput

Declaration:

int GIDML_IO_WriteGiDInputAndGiDOutput(const char* filename,const GiDInput_Handle hdl_gin, const
GiDOutput_Handle hdl_gout);

Definition:

This function writes the content of the GiDInput and GiDOutput structures of the handles in a .gidml binary file
(see Files).

Parameters:

The function receives as input parameters the name of the file to be created and filled with the data of the
GiDInput and GiDOutput structure (it must be the complete name of the file, including the path), and the handle
of it.

The function returns 0 if all the writing process has been ok, and 1 if it fails.

GiDML_IO_ReadGiDInputAndGiDOutput

Declaration:

int GIDML_10_ReadGiDInputAndGiDOutput(const char* filename, GiDInput_Handle& hdl_gin,
GiDOutput_Handle& hdl_gout);

Definition:

This function reads the content a .gidml file (see Files) and fill the GiDOInput and GiDOutput structures of the
handle with this data.

Parameters:

The function receives as input parameters the name of the file to be read (it must be the complete name of the

https://cimneprepost.atlassian.net/wiki/spaces/GMLD/pages/13772341/Files
https://cimneprepost.atlassian.net/wiki/spaces/GMLD/pages/13772341/Files
https://cimneprepost.atlassian.net/wiki/spaces/GMLD/pages/13772341/Files
https://cimneprepost.atlassian.net/wiki/spaces/GMLD/pages/13772341/Files

41

file, including the path) and a reference to the handle of the GiDOutput structure (‘hgl_gout').

Note: hdl_gin and hdl_gout must be NULL when calling the function. Inside the function it is created.

The function returns 0 if all the writing process has been ok, and 1 if it fails.

If the file does not contain GiDInput data or GiDOutput data, the corresponding handle remains as NULL.e

GiDML_IO_WriteMeshInGiDFormat

Declaration:

int GIDML_10_WriteMeshInGiDFormat(const char* filename, const GiDIO_Handle hdl);

Definition:

This function writes the content of the GiDInput or GiDOutput structure of the handle in an ASCII file following
the GiD mesh format (.msh). This format is documented in the GiD manuals, as well as in the website www.gidh
ome.com/support. This may be useful to visualize a mesh from a GiDInput or GiDOutput structure, but it has to
be considered that in these structures there should be more information than the needed to write the mesh in
GiD format, so additional parameters and other information may not be present in the mesh file.

Parameters:

The function receives as input parameters the name of the file to be created and filled with the mesh coming
from the data of the GiDInput structure (it must be the complete name of the file, including the path), and the
handle of it.

The function returns 0 if all the writing process has been ok, and 1 if it fails.

Other functions

GiDML_IO_GiDInputsAreEqual

Declaration:

bool GIDML_IO_GiDInputsAreEqual(const GiDInput_Handle ginput_handle_1,const GiDInput_Handle
ginput_handle_2);

Definition:

This function checks if the data inside two handles of GiDInput structure is equivalent.

Parameters:

It receives the two handles of the GiDInput structures to compare (‘'ginput_handle_1' and 'ginput_handle_2"), and
return a boolean (true or false) indicating if the data inside the structures is equivalent or not.

GiDML_IO_GiDOutputsAreEqual

Declaration:

bool GIiDML_I0O_GiDOutputsAreEqual(const GiDOutput_Handle goutput_handle_1,const GiDOutput_Handle
goutput_handle_2);

Definition:

This function checks if the data inside two handles of GiDOutput structure is equivalent.

Parameters:

It receives the two handles of the GiDOutput structures to compare (‘goutput_handle_1' and ‘goutput_handle_2"),
and return a boolean (true or false) indicating if the data inside the structures is equivalent or not.

Terms of use of the module

CIMNE is the propietary of this GIDML module. It is public and free, and it can be used without restrictions for
any purpose.

Modules

Hereafter, the functions present in the GiD Mesh Library are documented
Mesh generation

http://www.gidhome.com/support/
http://www.gidhome.com/support/

42

List of modules available for mesh generation (documentation accessible from the links):

® GIiDML_OctreeTetrahedraMesher module Home
® GiDML_Image2Mesh module Home

Comming soon

Mesh generation modules

List of modules comming soon for mesh generation(documentation accessible from the links):

¢ GiDML_BoundaryLayerMesher Home
¢ GiDML_AdvancingFrontTetrahedraMesher Home

Mesh editing modules

List of modules comming soon for mesh editing (documentation accessible from the links):

® GiDML_ProjectNodes module Home

Mesh analysis modules

List of modules comming soon for mesh analysis (documentation accessible from the links):

® GiDML_NodesDistancesToSurfaceMesh Home

https://cimneprepost.atlassian.net/wiki/pages/createpage.action?spaceKey=GM&title=GiDML_OctreeTetrahedraMesher+module+Home
https://cimneprepost.atlassian.net/wiki/pages/createpage.action?spaceKey=GMLi2m&title=GiDML_FromImage2Mesh+module+Home
https://cimneprepost.atlassian.net/wiki/spaces/GIDMLBLM/overview
https://cimneprepost.atlassian.net/wiki/spaces/GIDMLAF/overview
https://cimneprepost.atlassian.net/wiki/spaces/GIDMLPN/overview
https://cimneprepost.atlassian.net/wiki/spaces/GiDMLND/overview

	GiD Mesh Library documentation
	GiD Mesh Library
	Introduction
	Library structure
	Handles
	GiDML Modules
	Common functions

	Files

	Programming issues
	Programming language
	Linking GiDML with a C\C++ code
	Linking GiDML with a Fortran code

	Requirements
	Coding style
	General aspects
	Dependencies

	How to use the library
	Example of mesh generation module
	Variant of the example

	Terms of use and licencing schema

	GiDML IO module
	Module introduction
	Synthetic example
	I/O Structures
	GiDInput and GiDOutput
	Common data in GiDInput and GiDOutput

	Callback functions (GiDInput)
	Nodes
	Elements
	ELEM_TYPE

	Type of entity

	API functions
	Module information and data creator
	GiDML_IO module information
	GiDML module information
	Data creator

	Create and delete handles and structures
	GiDInput
	GiDOutput

	Callback functions
	Mesh definition
	Mesh dimension
	Mesh nodes
	Mesh edges
	Mesh faces
	Mesh elements
	Generic elements

	Additional parameters
	Parameters
	Attributes

	Write and Read using files
	Other functions

	Terms of use of the module

	Modules
	Mesh generation
	Comming soon
	Mesh generation modules
	Mesh editing modules
	Mesh analysis modules

