Here is an example of results for the table in the previous example (see Mesh example):

GiD Post Results File 1.0

GaussPoints "Board gauss internal" ElemType Triangle "board"

Number Of Gauss Points: 3

Natural Coordinates: internal

end gausspoints

GaussPoints "Board gauss given" ElemType Triangle "board"

Number Of Gauss Points: 3

Natural Coordinates: Given

0.2 0.2

0.6 0.2

0.2 0.6

End gausspoints

GaussPoints "Board elements" ElemType Triangle "board"

Number Of Gauss Points: 1

Natural Coordinates: internal

end gausspoints

GaussPoints "Legs gauss points" ElemType Line

Number Of Gauss Points: 5

Nodes included

Natural Coordinates: Internal

End Gausspoints

ResultRangesTable "My table"

# el ultimo rango es min <= res <= max

- 0.3: "Less"

0.3 - 0.9: "Normal"

0.9 - 1.2: "Too much"

End ResultRangesTable

Result "Gauss element" "Load Analysis" 1 Scalar OnGaussPoints "Board elements"

Values

5 0.00000E+00

6 0.20855E-04

7 0.35517E-04

8 0.46098E-04

9 0.54377E-04

10 0.60728E-04

11 0.65328E-04

12 0.68332E-04

13 0.69931E-04

14 0.70425E-04

15 0.70452E-04

16 0.51224E-04

17 0.32917E-04

18 0.15190E-04

19 -0.32415E-05

20 -0.22903E-04

21 -0.22919E-04

22 -0.22283E-04

End Values

Result "Displacements" "Load Analysis" 1 Vector OnNodes

ResultRangesTable "My table"

ComponentNames "X-Displ", "Y-Displ", "Z-Displ"

Values

1 0.0 0.0 0.0

2 -0.1 0.1 0.5

3 0.0 0.0 0.8

4 -0.04 0.04 1.0

5 -0.05 0.05 0.7

6 0.0 0.0 0.0

7 -0.04 -0.04 1.0

8 0.0 0.0 1.2

9 -0.1 -0.1 0.5

10 0.05 0.05 0.7

11 -0.05 -0.05 0.7

12 0.04 0.04 1.0

13 0.04 -0.04 1.0

14 0.05 -0.05 0.7

15 0.0 0.0 0.0

16 0.1 0.1 0.5

17 0.0 0.0 0.8

18 0.0 0.0 0.0

19 0.1 -0.1 0.5

End Values

Result "Gauss displacements" "Load Analysis" 1 Vector OnGaussPoints "Board gauss given"

Values

5 0.1 -0.1 0.5

0.0 0.0 0.8

0.04 -0.04 1.0

6 0.0 0.0 0.8

-0.1 -0.1 0.5

-0.04 -0.04 1.0

7 -0.1 0.1 0.5

0.0 0.0 0.8

-0.04 0.04 1.0

8 0.0 0.0 0.8

0.1 0.1 0.5

0.04 0.04 1.0

9 0.04 0.04 1.0

0.1 0.1 0.5

0.05 0.05 0.7

10 0.04 0.04 1.0

0.05 0.05 0.7

-0.04 0.04 1.0

11 -0.04 -0.04 1.0

-0.1 -0.1 0.5

-0.05 -0.05 0.7

12 -0.04 -0.04 1.0

-0.05 -0.05 0.7

0.04 -0.04 1.0

13 -0.1 0.1 0.5

-0.04 0.04 1.0

-0.05 0.05 0.7

14 -0.05 0.05 0.7

-0.04 0.04 1.0

0.05 0.05 0.7

15 0.1 -0.1 0.5

0.04 -0.04 1.0

0.05 -0.05 0.7

16 0.05 -0.05 0.7

0.04 -0.04 1.0

-0.05 -0.05 0.7

17 0.0 0.0 0.8

-0.04 -0.04 1.0

-0.04 0.04 1.0

18 0.0 0.0 0.8

0.04 0.04 1.0

0.04 -0.04 1.0

19 0.04 -0.04 1.0

0.04 0.04 1.0

0.0 0.0 1.2

20 0.04 -0.04 1.0

0.0 0.0 1.2

-0.04 -0.04 1.0

21 -0.04 -0.04 1.0

0.0 0.0 1.2

-0.04 0.04 1.0

22 -0.04 0.04 1.0

0.0 0.0 1.2

0.04 0.04 1.0

End Values

Result "Legs gauss displacements" "Load Analysis" 1 Vector OnGaussPoints "Legs gauss points"

Values

1 -0.1 -0.1 0.5

-0.2 -0.2 0.375

-0.05 -0.05 0.25

0.2 0.2 0.125

0.0 0.0 0.0

2 0.1 -0.1 0.5

0.2 -0.2 0.375

0.05 -0.05 0.25

-0.2 0.2 0.125

0.0 0.0 0.0

3 0.1 0.1 0.5

0.2 0.2 0.375

0.05 0.05 0.25

-0.2 -0.2 0.125

0.0 0.0 0.0

4 -0.1 0.1 0.5

-0.2 0.2 0.375

-0.05 0.05 0.25

0.2 -0.2 0.125

0.0 0.0 0.0

End Values

Table results example

results example