Results can be grouped into one block. These results belong to the same time step of the same analysis and are located in the same place. So all the results in the group are nodal results or are defined over the same gauss points set.

Each Result group is identified by a ResultGroup header, followed by the results descriptions and its optional properties - such as components names and ranges tables, and the results values - all between the lines Values and End values.

The structure is as follows and should:

  • Begin with a header that follows this model

ResultGroup "analysis name" step_value my_location "location name"

where

  • ResultGroup: is not case-sensitive;
  • "analysis name": is the name of the analysis of this ResultGroup, which will be used for menus; if the analysis name contains spaces it should be written between "" or between {}.
  • step_value: is the value of the step inside the analysis "analysis name";
  • my_location: is where the ResultGroup is located. It should be one of the following: OnNodes, OnGaussPoints. If the ResultGroup is OnGaussPoints, a "location name" should be entered.
  • "location name": is the name of the Gauss Points on which the ResultGroup is defined.

  • Be followed by at least one of the results descriptions of the group

ResultDescription "result name" my_result_type[:components_number]

ResultRangesTable "Name of a result ranges table"

ComponentNames "Name of Component 1", "Name of Component 2"

where

  • ResultDescription: is not case-sensitive;
  • "result name": is a name for the Result, which will be used for menus; if the result name contains spaces it should be written between "" or between {}.
  • my_type: describes the type of the Result. It should be one of the following: Scalar, Vector, Matrix, PlainDeformationMatrix, MainMatrix, or LocalAxes. The number of components for each type is as follows:
  • One for a Scalar: the_scalar_value
  • Three for a Vector: X, Y and Z
  • Six for a Matrix: Sxx, Syy, Szz, Sxy, Syz and Sxz
  • Four for a PlainDeformationMatrix: Sxx_value, Syy, Sxy and Szz
  • Twelve for a MainMatrix: Si, Sii, Siii, ViX, ViY, ViZ, ViiX, ViiY, ViiZ, ViiiX, ViiiY and ViiiZ
  • Three for a LocalAxes: euler_ang_1, euler_ang_2 and euler_ang_3
  • Two for ComplexScalar: real and imag
  • Six for ComplexVector: x_real, x_imag, y_real, y_imag, z_real, z_imag
  • Twelve for ComplexMatrix: Sxx_real, Syy_real, Szz_real, Sxy_real, Syz_real, Sxz_real, Sxx_imag, Syy_imag, Szz_imag, Sxy_imag, Syz_imag, Sxz_imag

Following the description of the type of the result, an optional modifier can be appended to specify the number of components separated by a colon. It only makes sense to indicate the number of components on vectors and matrices:

  • Vector:2, Vector:3 or Vector:4: which specify:
  • Vector:2: X and Y
  • Vector:3: X, Y and Z
  • Vector:4: X, Y, Z and |Vector| (module of the vector, with sign for some tricks)

The default (Vector) is 3 components per vector.

  • Matrix:3 or Matrix:6: which specify:
  • Matrix:3: Sxx, Syy and Sxy
  • Matrix:6: Sxx, Syy, Szz, Sxy, Syz and Sxz

The default (Matrix) is 6 components for matrices.

  • ComplexVector:4 or ComplexVector:6 which specify
  • ComplexVector:4: x_real, x_imag, y_real, y_imag
  • ComplexVector:6: x_real, x_imag, y_real, y_imag, z_real, z_imag
  • ComplexMatrix:3 or ComplexMatrix:6 which specify
  • ComplexMatrix:3: Sxx_real, Syy_real, Sxy_real, Sxx_imag, Syy_imag, Sxy_imag
  • ComplexMatrix:6: Sxx_real, Syy_real, Szz_real, Sxy_real, Syz_real, Sxz_real, Sxx_imag, Syy_imag, Szz_imag, Sxy_imag, Syz_imag, Sxz_imag

Here are some examples:

ResultDescription "Displacements" Vector:2

ResultDescription "2D matrix" Matrix:3

ResultDescription "LineDiagramVector" Vector:4

and where (optional properties)

  • ResultRangesTable "Name of a result ranges table": (optional) is not case-sensitive, and is followed by the name of the previously defined Result Ranges Table which will be used if the Contour Ranges result visualization is chosen (see Result Range Table);
  • ComponentNames "Name of Component 1", "Name of Component 2": (optional) is not case-sensitive, and is followed by the names of the components of the results which will be used in GiD. The number of Component Names are:
  • One for a Scalar Result
  • Three for a Vector Result
  • Six for a Matrix Result
  • Four for a PlainDeformationMatrix Result
  • Six for a MainMatrix Result
  • Three for a LocalAxes Result

  • End with the results values:

Values

location_1 result_1_component_1_value result_1_component_2_value result_1_component_3_value result_2_component_2_value result_2_component_2_value result_2_component_3_value

. . .

location_n result_1_component_1_value result_1_component_2_value result_1_component_3_value result_2_component_2_value result_2_component_2_value result_2_component_3_value

End Values

where

  • Values: is not case-sensitive, and indicates the beginning of the results values section;
  • The lines
  • location_1 result_1_component_1_value result_1_component_2_value result_1_component_3_value result_2_component_2_value result_2_component_2_value result_2_component_3_value
  • . . .
  • location_n result_1_component_1_value result_1_component_2_value result_1_component_3_value result_2_component_2_value result_2_component_2_value result_2_component_3_value

are the values of the various results described with ResultDescription for each location. All the results values for the location 'i' should be written in the same line 'i'.

The number of results values are limited thus:

  • If the Result is located OnNodes, they are limited to the number of nodes defined in ProjectName.post.msh.
  • If the Result is located OnGaussPoints "My GP", and if the Gauss Points "My GP" are defined for the mesh "My mesh", the limit is the number of gauss points in "My GP" multiplied by the number of elements of the mesh "My mesh".

Holes are allowed. The element nodes with no result defined will not be drawn, i.e. they will appear transparent.

The number of components for each ResultDescription are:

  • for Scalar results: one component result_number_i scalar_value
  • for Vector results: three components result_number_i x_value y_value z_value
  • for Matrix results: six components (3D models)3D: result_number_i Sxx_value Syy_value Szz_value Sxy_value Syz_value Sxz_value
  • for PlainDeformationMatrix results: four components result_number_i Sxx_value Syy_value Sxy_value Szz_value
  • for MainMatrix results: twelve components result_number_i Si_value Sii_value Siii_value Vix_value Viy_value Viz_value Viix_value Viiy_value Viiz_value Viiix_value Viiiy_value Viiiz_value
  • for LocalAxes results: three components describing the Euler angles result_number_i euler_ang_1_value euler_ang_2_value euler_ang_3_value

  • End Values: is not case-sensitive, and indicates the end of the results group values section.

Note: Vectors in a ResultGroup always have three components.

Note: Matrices in a ResultGroup always have six components.

Note: All the results of one node or gauss point should be written on the same line.

Note: For Matrix and PlainDeformationMatrix results, the Si, Sii and Siii components are calculated by GiD, which represents the eigen values & vectors of the matrix results, and which are ordered according to the eigen value.

Nodal ResultGroup example:

ResultGroup "Load Analysis" 1 OnNodes

ResultDescription "Ranges test" Scalar

ResultRangesTable "My table"

ResultDescription "Scalar test" Scalar

ResultRangesTable "Pressure"

ResultDescription "Displacements" Vector

ComponentNames "X-Displ", "Y-Displ" "Z-Displ"

ResultDescription "Nodal Stresses" Matrix

ComponentNames "Sx", "Sy", "Sz", "Sxy", "Syz", "Sxz"

Values

1 0.0 0.000E+00 0.000E+00 0.000E+00 0.0 0.550E+00 0.972E-01 -0.154E+00 0.0 0.0 0.0

2 6.4e-01 0.208E-04 0.208E-04 -0.191E-04 0.0 0.506E+00 0.338E-01 -0.105E+00 0.0 0.0 0.0

3 0.0 0.355E-04 0.355E-04 -0.376E-04 0.0 0.377E+00 0.441E-02 -0.547E-01 0.0 0.0 0.0

...

115 7.8e-01 0.427E-04 0.427E-04 -0.175E-03 0.0 0.156E-01 -0.158E-01 -0.300E-01 0.0 0.0 0.0

116 7.4e-01 0.243E-04 0.243E-04 -0.189E-03 0.0 0.216E-02 -0.968E-02 -0.231E-01 0.0 0.0 0.0

End Values

Gauss Points ResultGroup example:

GaussPoints "My Gauss" ElemType Triangle "2D Beam"

Number Of Gauss Points: 3

Natural Coordinates: Internal

End gausspoints

ResultGroup "Load Analysis" 1 OnGaussPoints "My Gauss"

ResultDescription "Gauss test" Scalar

ResultDescription "Vector Gauss" Vector

ResultDescription "Gauss Points Stresses" PlainDeformationMatrix

Values

1 1.05 1 0 0.0 -19.4607 -1.15932 -1.43171 -6.18601

2.1 0 1 0.0 -19.4607 -1.15932 -1.43171 -6.18601

3.15 1 1 0.0 -19.4607 -1.15932 -1.43171 -6.18601

2 1.2 0 0 0.0 -20.6207 0.596461 5.04752 -6.00727

2.25 0 0 0.0 -20.6207 0.596461 5.04752 -6.00727

3.3 2.0855e-05 -1.9174e-05 0.0 -20.6207 0.596461 5.04752 -6.00727

3 1.35 2.0855e-05 -1.9174e-05 0.0 -16.0982 -1.25991 2.15101 -5.20742

2.4 2.0855e-05 -1.9174e-05 0.0 -16.0982 -1.25991 2.15101 -5.20742

3.45 2.0855e-05 -1.9174e-05 0.0 -16.0982 -1.25991 2.15101 -5.20742

...

191 29.55 4.2781e-05 -0.00017594 0.0 -0.468376 12.1979 0.610867 3.51885

30.6 4.2781e-05 -0.00017594 0.0 -0.468376 12.1979 0.610867 3.51885

31.65 4.2781e-05 -0.00017594 0.0 -0.468376 12.1979 0.610867 3.51885

192 29.7 4.2781e-05 -0.00017594 0.0 0.747727 11.0624 1.13201 3.54303

30.75 4.2781e-05 -0.00017594 0.0 0.747727 11.0624 1.13201 3.54303

31.8 2.4357e-05 -0.00018974 0.0 0.747727 11.0624 1.13201 3.54303

End Values

Result groupresult groups