
GiD Mesh Library:
Ocree Tetrahedra 1.1.1

Mesher Module

1. Introduction . 3
2. Module description . 3

2.1 General overview . 3
2.2 Mesh size information . 3
2.3 Forced nodes and edges . 4
2.4 Preserve geometrical features . 4
2.5 Topology preservation . 4
2.6 Working with non-watertight geometries . 5

3. Module functions . 5
3.1 Module and version information . 5
3.2 GiDML_OctreeTetrahedraMesher . 9
3.3 GiDML_OctreeTetrahedraMesher_CheckConsistency . 9
3.4 GiDML_OctreeTetrahedraMesher_GetErrorString . 9
3.5 GiDML_OctreeTetrahedraMesher_DeleteGiDMLOutputContent 10

4. Input data . 10
4.1 Spatial dimension . 11
4.2 Input nodes . 11

4.2.1 Module attributes for the input nodes . 11
4.3 Input edges . 11

4.3.1 Module attributes for the input edges . 12
4.3.2 User attributes for input edges . 12

4.4 Input faces . 13
4.4.1 Module attributes for the input faces . 13
4.4.2 User attributes for input faces . 14

4.5 Input elements . 14
4.5.1 Module attributes for input elements . 14

4.6 Input parameters . 14
5. Output data . 17

5.1 Output nodes . 17
5.1.1 Module attributes for the output nodes . 17

5.2 Output edges . 18
5.3 Output faces . 18
5.4 Output elements . 18

5.4.1 Module attributes for the output elements . 18
6. Examples . 19

6.1 Mesh of a cube . 19
6.1.1 Forced edges . 21

6.2 Mesh of two connected volumes . 21
6.2.1 Different sizes in each volume . 24
6.2.2 Entities only to give mesh size information . 24
6.2.3 User attribute to identify a patch of triangles . 25

6.3 Embedded mesh . 26
7. Terms of use of the module . 28

GiD v16

3

Introduction
This is the documentation of the module of the GiDMeshLibrary . It refers to GiDML_OctreeTetrahedraMesher
its .version 1.0.0

Additional information can be found at https://www.gidsimulation.com/gid-for-science/gid-plus/gidml

For any comment or suggestion, please contact .gidml@cimne.upc.edu

Module description
General overview

The module is an unstructured volume mesh generator. It's an octree-based GiDML_OctreeTetrahedraMesher
meshed which ensures geometrical features and model topology preservation. It gets a triangle mesh defining
the contours of the volumes of the model as an input, and returns a tetrahedra mesh of them which represents
the topology of the input data, but is not constrained to those triangles. This allows to use optimized meshes for
defining the shape of the contours (typically visualization meshes), and decouple the probability of success of
the mesher from the quality of triangles of the contours.

Its fields of use are wide, considering all the numerical methods working with unstructured tetrahedra:
Computational Fluid Dynamics, Structural Analysis, Fluid Structure Interaction, etc...

Its main characteristics are:

Robustness: the mesher has been designed based on its robustness. The algorithm can generate the
tetrahedra volume mesh independently from the quality of the input contours of the volumes and the
meshing parameters.
Speed: it is a very fast mesher (it can generate more than 10 millions of tetrahedra per minute), also taking
advantage on a parallel implementation following shared memory paradigm.
Mesh of : this aspect, together with the robustness of the mesher, reduces non-watertight geometries
drastically the time needed to generate a calculation mesh considering the almost no need of CAD cleaning
operations in the original model.
Suitable for meshes: it can generate body-fitted meshes and embedded ones. body-fitted and embedded
In that case, a field of the distances from each node of the final mesh to the contours of the volumes is
returned together with the mesh. The embedded approach is extremely robust.
Mesh the : the input of the mesher are the triangles meshes of the contours of the whole model at a time
volumes involved in the model. If more than one volume share some contour, the resulting mesh will
represent that topology properly.

The meshing algorithm followed is based in the PhD thesis:
A.Coll, " ".PhD thesis, Polytechnical Robust volume mesh generation for non-watertight geometries
University of Catalonia (UPC-BarcelonaTech), Spain, 2014.

It can be downloaded from the website https://www.gidsimulation.com/gid-for-science/gid-plus/gidml

This document focus on how to use the module, rather than how the module works internally (which can be
consulted in the thesis).

Mesh size information

The GiDML_OctreeTetrahedraMesher is designed to be able to generate a mesh with the less parameters as
possible, including the option not to provide with any mesh size. However, it is well known that any simulation
has its own requirements in terms of mesh size, refinement or sizes transitions.

The module offers different ways to define the required mesh size:

https://www.gidsimulation.com/gid-for-science/gid-plus/gidml
mailto:gidml@cimne.upc.edu
https://www.gidsimulation.com/gid-for-science/gid-plus/gidml

GiD v16

4

General mesh size: a general mesh size can be set which will be applied to the whole model as the
maximum one. It is assigned using the parameter "GIDML_OCTREEMESHER_GENERAL_MESH_SIZE"
(see). Input parameters
Mesh size entities: a specific mesh size can be assigned to any mesh entity from the input data (being it an
entity defining the model, or an entity only to provide with mesh information). It can be assigned to nodes,
edges, faces or elements. See the corresponding Attributes defined in for each kind of entity.Input data
Sizes for the volumes: a specific mesh size can be assigned to the mesh of each volume of the domain. For
this purpose, the parameters vector "GIDML_OCTREEMESHER_VOLUMES_SIZES" is used (see Input

).parameters

In case that more than specific mesh size has been assigned to the same region in space, the mesher is always
getting the smaller one.

Note that this module generates the mesh from an octree structure, which is homogeneous. This implies that is
hard to obtain elements with edges larger than the minimum size of the bounding box of the model.

Apart from defining specific mesh sizes in given regions of the domain, it is also interesting to control somehow
the sizes transitions between areas with smaller sizes to areas with larger ones. For this purpose the parameter
"GIDML_OCTREEMESHER_SIZE_TRANSITION_FACTOR" is used (see). Input parameters

Forced nodes and edges

One can define specific positions in space to have a node in the output mesh (forced node). For this purpose,
the module attribute "GIDML_OCTREEMESHER_NODES_FORCED" is used in the input nodes (see Module

). Note that this forced nodes can be part of the boundary of a volume, or inner to it.attributes for the input nodes

It is also possible to define specific line paths (defined with line elements) to have a connected path of edges in
the final mesh too (forced edges). It is done introducing edges in the input data (see). Note that this Input edges
forced edges can be part of the boundary of a volume, or inner to it.

This is essential if the program linking with the GiDML module wants to have a relationship between curves of
the model and edges of the output mesh.

Preserve geometrical features

One of the important aspects of a mesh generator is to preserve the geometrical features of the input model,
specifically the sharp edges (ridges) and corners.

If we know them a priori, we can always set them as forced nodes or edges in the input data (see Forced nodes
), but there is also de possibility to indicate the maximum angle below which a dihedral angle and edges

between adjacent faces in the input data is considered a ridge. Actually, it is not done defining the angle, but the
cosinus of it. Is is done with the input parameter
"GIDML_OCTREEMESHER_MIN_COSINUS_FOR_SHARP_EDGES".

Topology preservation

The GiDML_OctreeTetrahedraMesher module preserves the topology of the model to be meshed. This means:

There are a set of connected tetrahedra (and only one set) for each one of the volumes from the input data.
The triangle skin mesh of the tetrahedra of each volume is a manifold watertight set of triangles.

If we consider the typical ' ' condition used in other meshers, we can say that this constrained/no constrained
mesher is partially constrained. This means that the skin of each volume meshes generated is not matching
with the triangles defining the contours of the volumes in the input data. However, if the input data is properly
set, we can obtain a set of triangles in the output mesh (skin of volume mesh) corresponding to a set of
triangles from the input data.

This is useful, for instance, if we want to get the triangles of the final mesh comming from a given surface from
the input data. To do so, the contour edges of the set of triangles from the input data must be set as forced

GiD v16

5

edges (see), and then the generated mesh will have a set of triangles enclosed inside Forced nodes and edges
them, corresponding to the input ones. This is explained in more detail in the Section 3.1 of the PhD thesis
"Robust volume mesh generation for non-watertight geometries", this mesher is based on.

As a main conclusion concerning the topology preservation, it is ensured that if the input data is comming from
specific points, curves or surfaces, the corresponding nodes, line elements and triangles can be obtained in the
generated mesh, so as there can be a one to one relationship with the input data and the output mesh.

Working with non-watertight geometries

One of the main aspects of the GiDML_OctreeTetrahedraMesher module is that it can generate volume meshes
from non-watertight definitions of the contours of the volumes of the model. We consider non-watertight
definitions the ones which may have (in the definition of the volumes' contours):

gaps
faces overlappings

It is mainly achieved due to the advanced Ray Casting technique developed to solve the Point in Polygon (PiP)
problem. That is, to detect is a specific point in space is inside or outside a volume, defined by its contours. The
used Ray Casting technique, as well as some examples of its application is explained in more detail in the
Section 4.3 of the PhD thesis "Robust volume mesh generation for non-watertight geometries", this mesher is
based on.

At user level, one have to consider that if working with non-watertight geometries may be less robust than
working with watertight ones. Of course, the size of the gaps or the distance between overlapping entities must
be considerable smalles than the mesh desired size in that region, otherwise, the mesher will not be cappable
to 'enclose' the volume mesh.

One main aspect for ensuring the success in the mesh generation of non-watertight geometries is to introduce a
tolerance in the input data, corresponding to a higher bound of the approximate size of the gaps or distance
between overlapping entities. This is done using the "GIDML_OCTREEMESHER_TOLERANCE_FOR_GAPS"
parameter (see).Input parameters

Module functions
All the functions provided by the module are described hereafter, and are declared in the header file
gidml_octree_tetrahedra_mesher.h.

Module and version information

These are the module functions related to the module information (name and version number).

GiDML_OctreeTetrahedraMesher_GetModuleName

Declaration:
const char *GiDML_OctreeTetrahedraMesher_GetModuleName();
Definition:
This function provides with the name of this module. It may be usefull for checking input data read from a .gidml
file, for instance (see). Files
Parameters:
No parameters for this function.

Returned value:
The name of the GiDML_OctreeTetrahedraMesher module is returned in a format. It is the value const char*
defined in the gidml_octree_tetrahedra_mesher.h file, under the #define

. GiDML_OCTREE_TETRAHEDRA_MESHER_MODULE_NAME

https://gidsimulation.atlassian.net/wiki/spaces/GMLD/pages/13772341/Files

GiD v16

6

GiDML_OctreeTetrahedraMesher_GetModuleVersion

Declaration:
const char *GiDML_OctreeTetrahedraMesher_GetModuleVersion();
Definition:
This function provides with the version of this module.
Parameters:
No parameters for this function.

Returned value:
The version of the GiDML_OctreeTetrahedraMesher module is returned in a format. It is the value const char*
defined in the gidml_octree_tetrahedra_mesher.h file, under the #define

. GiDML_OCTREE_TETRAHEDRA_MESHER_MODULE_VERSION

GiDML_OctreeTetrahedraMesher_GetModuleFormatVersion

Declaration:
const char *GiDML_OctreeTetrahedraMesher_GetModuleFormatVersion();
Definition:
This function provides with the version of the format used by this module to write the input and output data in .
gidml files (see). Files
Parameters:
No parameters for this function.

Returned value:
The version of the GiDML_OctreeTetrahedraMesher format is returned in a format. It is the value const char*
defined in the gidml_octree_tetrahedra_mesher.h file, under the #define

. GiDML_OCTREE_TETRAHEDRA_MESHER_FORMAT_VERSION

GiDML_OctreeTetrahedraMesher_GetVersion_Number

Declaration:
double GiDML_OctreeTetrahedraMesher_GetVersion_Number(const char* version);
Definition:
This function provides with a number (in double format) corresponding to the version provided by the
GiDML_OctreeTetrahedraMesher_GetModuleFormatVersion and
GiDML_OctreeTetrahedraMesher_GetModuleVersion functions (in const char* format). It is guaranteed that the
number obtained from a newer version is greater than the obtained from an older one. This is useful to detect if
a module version is newer or older than another.
Parameters:
Only one parameter is required by this function: the version id (in format) from which the number is const char*
required.

Returned value:
The number associated to the version is returned in double format.

GIDML_OctreeTetrahedraMesher_GetMinimumVersionToSaveInput

Declaration:
const char* GIDML_OctreeTetrahedraMesher_GetMinimumVersionToSaveInput(const GiDMLInput_Handle
hdl_gin);
Definition:
This function provides with the oldest number of format version in which the data included in the GiDMLInput
handle can be saved. In some occasions it is useful to save the data in the .gidml file in older versions, to allow

https://gidsimulation.atlassian.net/wiki/spaces/GMLD/pages/13772341/Files

GiD v16

7

programs linked with older versions of the module run some cases.
Parameters:
Only one parameter is required by this function which is the GiDMLInput handle where the data is.

Returned value:
The older version in which the data included in the GiDMLInput handle is returned in const char* format.

GIDML_OctreeTetrahedraMesher_GetMinimumVersionToSaveOutput

Declaration:
const char* GIDML_OctreeTetrahedraMesher_GetMinimumVersionToSaveOutput(const GiDMLOutput_Handle
hdl_gout);
Definition:
This function provides with the oldest number of format version in which the data included in the GiDMLOutput
handle can be saved. In some occasions it is useful to save the data in the .gidml file in older format versions, to
allow programs linked with older versions of the module run some cases.
Parameters:
Only one parameter is required by this function which is the GiDMLOutput handle where the data is.

Returned value:
The older version in which the data included in the GiDMLOutput handle is returned in const char* format.

GiDML_OctreeTetrahedraMesher_CheckModuleAndVersion

Declaration:
int GiDML_OctreeTetrahedraMesher_CheckModuleAndVersion(const GiDMLIO_Handle hdl_gio);
Definition:
This function checks whether the module the data in the handle is for is the same as
GiDMLOctreeTetrahedraMesher module, and if its format version is the same as the one in the module.This
function is usefull when reading data from .gidml files which were written with different versions of the module.
Parameters:
The handle of the GiDMLInput or GiDMLOutput data is required as the only parameter for the funcion.

Returned value:
The function returns the following integer values depending on the case:

0 if module and version are the same
-1 if module name is not the same
-2 if module format version in hdl_gio is higher than the module one
2 if module format version in hdl_gio is lower than the module one

GiDML_OctreeTetrahedraMesher_TransformGiDMLInputFromOlderVersion

Declaration:
int GiDML_OctreeTetrahedraMesher_TransformGiDMLInputFromOlderVersion(const char* older_version, const
char* newer_version, GiDMLInput_Handle hdl_gin);
Definition:
This function transform the input data inside the handle, which was written in an older format, to a newer format
of the GiDML_OctreeTetrahedraMesher module. This function is usefull when working with .gidml files written in
other versions than the current of the module.
Parameters:
The function parameters are the older and newer versions identifiers (in const char* format), and the handle
containing the data.

Returned value:
The function returns 0 if it has been able to transform data, and 1 if not.

GiD v16

8

Depending on the versions managed, it may be the case that the data has been transformed to another version,
but not the required one (it is transformed progressively from one version to the required one). In that case the
function also returns 1.

GiDML_OctreeTetrahedraMesher_TransformGiDMLInputToOlderVersion

Declaration:
int GiDML_OctreeTetrahedraMesher_TransformGiDMLInputToOlderVersion(const char* newer_version, const
char* older_version, GiDMLInput_Handle hdl_gin);
Definition:
This function transform the input data inside the handle, which was written in a newer format, to an older format
of the GiDML_OctreeTetrahedraMesher module. This function is usefull when working with .gidml files written in
other versions than the current of the module.
Parameters:
The function parameters are the older and newer versions identifiers (in const char* format), and the handle
containing the data.

Returned value:
The function returns 0 if it has been able to transform data, and 1 if not.

Depending on the versions managed, it may be the case that the data has been transformed to another version,
but not the required one (it is transformed progressively from one version to the required one). In that case the
function also returns 1.

GiDML_OctreeTetrahedraMesher_TransformGiDMLOutputFromOlderVersion

Declaration:
int GiDML_OctreeTetrahedraMesher_TransformGiDMLOutputFromOlderVersion(const char* older_version,
const char* newer_version, GiDMLOutput_Handle hdl_gout);
Definition:
This function transform the output data inside the handle, which was written in an older format, to a newer
format of the GiDML_OctreeTetrahedraMesher module. This function is usefull when working with .gidml files
written in other versions than the current of the module.
Parameters:
The function parameters are the older and newer versions identifiers (in const char* format), and the handle
containing the data.

Returned value:
The function returns 0 if it has been able to transform data, and 1 if not.

Depending on the versions managed, it may be the case that the data has been transformed to another version,
but not the required one (it is transformed progressively from one version to the required one). In that case the
function also returns 1.

GiDML_OctreeTetrahedraMesher_TransformGiDMLOutputToOlderVersion

Declaration:
int GiDML_OctreeTetrahedraMesher_TransformGiDMLOutputToOlderVersion(const char* newer_version, const
char* older_version, GiDMLOutput_Handle hdl_gout);
Definition:
This function transform the output data inside the handle, which was written in a newer format, to an older
format of the GiDML_OctreeTetrahedraMesher module. This function is useful when working with .gidml files
written in other versions than the current of the module.
Parameters:
The function parameters are the older and newer versions identifiers (in const char* format), and the handle
containing the data.

GiD v16

9

Returned value:
The function returns 0 if it has been able to transform data, and 1 if not.

Depending on the versions managed, it may be the case that the data has been transformed to another version,
but not the required one (it is transformed progressively from one version to the required one). In that case the
function also returns 1.

GiDML_OctreeTetrahedraMesher

This is the function calling to the mesh generator itself.

Declaration:
int GiDML_OctreeTetrahedraMesher(const GiDMLInput_Handle hdl_gin, GiDMLOutput_Handle hdl_gout);
Definition:
This function is the unstructured tetrahedra mesher itself.
Parameters:
The function recieves the input data handle hdl_gin with the corresponding volume boundaries, parameters,
etc... and returns the final mesh in the output data handle hdl_gout.

Returned value:
This function returns an error_id (in integer format) that can be processed by
GiDML_OctreeTetrahedraMesher_GetErrorString function (see GiDML_OctreeTetrahedraMesher_GetErrorString
). If all the meshing process has finalized succesfully, it returns 0.

GiDML_OctreeTetrahedraMesher_CheckConsistency

Declaration:
int GiDML_OctreeTetrahedraMesher_CheckConsistency(const GiDMLInput_Handle hdl_gin);
Definition:
This function performs light checks to the input data to ensure it is right for generating the mesh with the
GiDML_OctreeTetrahedraMesher function (see). For instance: if there are no GiDML_OctreeTetrahedraMesher
faces in the input datat defining the contours of the volumes, the module could not generate the mesh.
Parameters:
The function recieves the input data handle hdl_gin which is the candidate to be used for generating the mesh
using the GiDML_OctreeTetrahedraMesher function.

Returned value:
This function returns an error_id (in integer format) that can be processed by
GiDML_OctreeTetrahedraMesher_GetErrorString function (see GiDML_OctreeTetrahedraMesher_GetErrorString
). If all the meshing process has finalized succesfully, it returns 0.

GiDML_OctreeTetrahedraMesher_GetErrorString

Declaration:
const char* GiDML_OctreeTetrahedraMesher_GetErrorString(const int error_id);
Definition:
This function provides with the meaningful information corresponding to an error_id returned by the functions
GiDML_OctreeTetrahedraMesher, GiDML_OctreeTetrahedraMesher_CheckConsistency.
Parameters:
The function recieves as parameter an error_id in integer format.

Returned value:
The function returns the error message corresponding to the error_id in const char* format. They are listed
hereafter:

error_id message

GiD v16

10

0 "Everything is ok"

1 "Error in octree based mesher"

2 "There is no GiDMLInput handle"

3 "There are no nodes inside GiDMLInput handle"

4 "There are no faces inside GiDMLInput handle"

5 "Error in octree based mesher processing the input data"

6 "Error refining octree with user sizes"

7 "Error refining octree considering forced entities"

8 "Error coloring octree nodes with raycasting technique"

9 "Error refining octree for preserving topology"

10 "Error coloring tetrahedra"

11 "Error filling GiDMLOutput structure"

12 "Error preserving geometrical features"

13 "Error fitting surfaces to mesh"

14 "Error collapsing small elements after generating mesh"

15 "Error in make-up and smoothing operations after generating mesh"

16 "Error computing distances and coloring nodes in embedded mesh"

17 "Unknown error in octree based mesher"

18 "There are some forced points inner to a volume which are onto its interface"

In the header file gidml_octree_tetrahedra_ mesher.h file this list of messages is also present.

GiDML_OctreeTetrahedraMesher_DeleteGiDMLOutputContent

Declaration:
int GiDML_OctreeTetrahedraMesher_DeleteGiDMLOutputContent(GiDOutput_Handle hdl_gout);
Definition:
This function deletes the content of the GiDMLOutput structure corresponding to the GiDMLOutput_Handle
created by the GiDML_OctreeTetrahedraMesher module. As the module has created these data and filled the
GiDoutput with them, it is the responsible to delete them.

Note that the GiDMLOutput structure corresponding to the handle is not deleted. It should be deleted using the
GiDML_IO_DeleteGiDMLOutputHandle function from the GiDML_IO module (see).GiDML IO module
Parameters:
The function receives the output data handle hdl_gout.

Returned value:
This function returns 0 if all the deletion process has been done with no problems, and 1 if there has been some
problem.

Input data

https://gidsimulation.atlassian.net/wiki/spaces/GMLD/pages/13772372/GiDML+IO+module

GiD v16

11

This section describes the input data for the GiDML_OctreeTetrahedraMesher module.

Spatial dimension

The GiDML_OctreeTetrahedraMesher module is always working in 3D (spatial dimension equal to 3).

Input nodes

All the nodes involved in the input data must be introduced in the list of nodes coordinates of the GiDMLInput
handle, following the standard API functions of GiDML_IO module (see). It has to be noted GiDML IO module
that the GiDML_OctreeTetrahedraMesher works always in 3D (3 coordinates per node).

Note that all the nodes involved in the input data must be entered. Those are:

the ones belonging to the triangles of the contours of the volumes
the ones belonging to some mesh size entity
the ones belonging to some forced edge

Note that the order to enter the nodes coordinates in the coordinates vector of the input data must be this:
nodes from triangles of the contour, forced nodes (if they exist) and nodes of back

In the connectivities information of edges, faces and elements of the GiDMLInput structure, as well as in
possible reference to nodes in the attributes or parameters, the id of the node refers always to the position of
the node in this list of nodes coordinates (beginning from 0 position).

The GiDML_OctreeTetrahedraMesher module is not considering any for nodes from the input user attribute
data. If they exists, the module is simply doing nothing with them, but it works normally.

Module attributes for the input nodes

The module attributes for the input nodes for the GiDML_OctreeTetrahedraMesher module are listed hereafter.

Note that, for using the API functions, all of them are of entity type and type of attribute GIDML_NODE GIDML_
.MODULE_ATTRIBUTE

Name Valu
e
type

Description Possible values

GIDML_O
CTREEME
SHER_NO
DES_FOR
CED

GID
ML_
TYP
E_IN
TEG
ER

This attribute
indicates if the
node is a forced
node in the final
mesh.

If the value is 0, the node is not a forced node, otherwise, it is, so it
will have a node in the same position in the output mesh. Note that in
this case, the output data will have the
attribute GIDML_OCTREEMESHER_NODES_FORCED_FROM_INP
UT in its nodes.

GIDML_O
CTREEME
SHER_NO
DES_SIZES

GID
ML_
TYP
E_D
OUB
LE

This attribute
correponds to
the mesh size
assigned to the
node.

If the value is 0.0, the size is not taken into account.

Note that these attributes are not mandatory for the mesh generator. By default, if no attribute is set:

it is considered that there are no forced points
no specific size assigned to any node

Input edges

https://gidsimulation.atlassian.net/wiki/spaces/GMLD/pages/13772372/GiDML+IO+module

GiD v16

12

All the edges involved in the input data must be introduced in the edges connectivities of the GiDMLInput
handle, following the standard API functions of GiDML_IO module (see). GiDML IO module The
GiDML_OctreeTetrahedraMesher works only with Line elements of 2 nodes.

Note that all the edges involved in the input data must be entered. Those are:

the forced edges to be preserved by the mesher
the edges used to provide with mesh size information

The connectivities of the edges are provided with the id of the corresponding nodes which is the position of the
node in this list of nodes coordinates (beginning from 0 position).

Module attributes for the input edges

The module attributes for the input edges for the GiDML_OctreeTetrahedraMesher module are listed hereafter.

Note that, for using the API functions, all of them are of entity type and type of attribute GIDML_EDGE GIDML_
.MODULE_ATTRIBUTE

Name Val
ue
type

Description Possible values

GIDM
L_OC
TREE
MESH
ER_E
DGES
_COL
ORS

GI
D
M
L_
TY
PE
_I
NT
E
G
ER

This attribute indicates if the edge is part
of a boundary of a volume (in this case,
they must belong to some triangle
contour of a volume), inner to a volume,
or only to give mesh size information (not
a forced edge for the final mesh).

If the value is 0 (value by default), the edge is a
forced edge part of a boundary. Values 'i' greater
than 0 indicate it is a forced edge inner to the
volume 'i'. Value equal to -1 indicates the edge is
only to give mesh size information. By default, all
the edges are part of the boundary (0).

GIDM
L_OC
TREE
MESH
ER_E
DGES
_SIZES

GI
D
M
L_
TY
PE
_D
O
U
BLE

This attribute correponds to the mesh
size assigned to the edges.

If the value is 0.0, the size is not taken into
account.

Note that these attributes are not mandatory for the mesh generator. By default, if no attribute is set:

all the edges are in the boundaries of the volumes, and must belong to some triangle from the boundary
no specific size assigned to any edge.

User attributes for input edges

The GiDML_OctreeTetrahedraMesher module considers the user attributes that the input edges may have.
They can have any name and value type, and there can be any number of them.

https://gidsimulation.atlassian.net/wiki/spaces/GMLD/pages/13772372/GiDML+IO+module

GiD v16

13

In case the forced edges have some user attribute, the attribute is transmitted to the nodes and edges of the
output mesh which are onto the forced edges. This may be useful in cases where it is required to know the input
entities some output entity comes from; for instance, the line elements in the output mesh corresponding to
some line of the input geometry.

Note that, for using the API functions, all these user attributes are of entity type and type of GIDML_EDGE
attribute . GIDML_USER_ATTRIBUTE

Input faces

All the faces involved in the input data must be introduced in the faces connectivities of the GiDMLInput handle,
following the standard API functions of GiDML_IO module (see). The GiDML IO module
GiDML_OctreeTetrahedraMesher works only with faces in the input data.3 nodes Triangle

Note that all the faces involved in the input data must be entered. Those are:

the triangles defining the contours of the volumes of the model to be meshed
the triangles used to provide with mesh size information

The connectivities of the triangles are provided with the id of the corresponding nodes which is the position of
the node in this list of nodes coordinates (beginning from 0 position).

Module attributes for the input faces

The module attributes for the input faces for the GiDML_OctreeTetrahedraMesher module are listed hereafter.

Note that, for using the API functions, all of them are of entity type and type of attribute GIDML_FACE GIDML_M
.ODULE_ATTRIBUTE

Name Val
ue
type

Description Possible values

GIDML_OCTREEM
ESHER_FACES_IN
TERFACES_1 and
GIDML_OCTREEM
ESHER_FACES_IN
TERFACES_2

GI
D
ML
_T
YP
E_
IN
TE
GER

These two attributes indicate the
two ids of the volumes the face is
interfacing. Exterior is considered
as volume '0'. The ids of the
volumes must be correlative, and
beginning by 1.

Faces interfacing two times the same
volume are considered as faces inner to
the volume. Faces interfacing two times
the volume '-1' indicate that they are only
for giving mesh size information: they are
not part of the domain.

GIDML_OCTREEM
ESHER_FACES_E
MBEDDED

GI
D
ML
_T
YP
E_
IN
TE
GER

This attribute indicates if the faces
correspond to embedded or body-
fitted boundaries. Embedded
boundaries are only considered for
computing distances to them from
the final mesh nodes.

If the value is 0 (default value), the face is
part of body-fitted boundary, otherwise it is
embedded.

GIDML_OCTREEM
ESHER_FACES_SI
ZES

GI
D
ML
_T
YP
E_

This attribute correponds to the
mesh size assigned to the faces.

If the value is 0.0, the size is not taken
into account.

https://gidsimulation.atlassian.net/wiki/spaces/GMLD/pages/13772372/GiDML+IO+module

GiD v16

14

D
O
UB
LE

Note that these attributes are not mandatory for the mesh generator. By default, if no attribute is set:

all the faces are considered as in the boundary of one unique volume, so they interface the volume and the
exterior of the domain.
no specific size assigned to any face.

User attributes for input faces

The GiDML_OctreeTetrahedraMesher module considers the user attributes that the input faces may have. They
can have any name and value type, and there can be any number of them.

In case the input faces have some user attribute, the attribute is transmitted to the nodes, edges and faces of
the output mesh which lay onto them. This may be useful in cases where it is required to know the input entities
some output entity comes from; for instance, the triangles of the output mesh boundary of a volume
corresponding to some set of faces (surface) of the input geometry.

Note that, for using the API functions, all these user attributes are of entity type and type of GIDML_FACE
attribute .GIDML_USER_ATTRIBUTE

Input elements

The GiDML_OctreeTetrahedraMesher only get input volume elements to provide mesh size information for the
final mesh. It accepts and types of elements.4 nodes Tetrahedra 8 nodes Hexahedra

The connectivities of the elements are provided with the id of the corresponding nodes which is the position of
the node in the list of nodes coordinates (beginning from 0 position).

Module attributes for input elements

There is only one module attribute for the input elements for the GiDML_OctreeTetrahedraMesher module,
which indicates the mesh size assigned to them.

Name Value type Description Possible values

GIDML_OCTREEMESHE
R_ELEMENTS_SIZES

GIDML_TY
PE_DOUBLE

This attribute correponds to the
mesh size assigned to the elements.

If the value is 0.0, the size
is not taken into account.

Note that, for using the API functions, this attribute is of entity type and type of attribute GIDML_ELEMENT GID
.ML_MODULE_ATTRIBUTE

This attribute is not mandatory for the mesh generator. By default, if it is not set, the input elements are not
considered in the GiDML_OctreeTetrahedraMesher module.

Input parameters

This section refers to the parameters from the GiDML_OctreeTetrahedraMesher module format version 1.2 on.

Parameters

The input scalar parameters for the GiDML_OctreeTetrahedraMesher module are listed hereafter. Note that all
the parameters are stored as doubles, however, they can be set as integers also using the API functions.
Values indicated as default are the ones taken if the parameter is not set.

Name Description Possible values

GiD v16

15

GIDML_
OCTREE
MESHER
_GENER
AL_MES
H_SIZE

This is the general mesh size, which will be applied to the
entities with no size assigned.

If the value is 0.0 (default value),
the size is not taken into account.

GIDML_
OCTREE
MESHER
_QUADR
ATIC_TY
PE

This parameter indicates if the resultant mesh should be
quadratic or not. The module only considers one type of
quadratic allowed: nodes in center of edges (3 nodes line
elements, 6 nodes triangles and 10 nodes tetrahedra).

If the value is 0 (default value)
the resulting mesh is linear, and
if it is 1 is quadratic.

GIDML_
OCTREE
MESHER
_SIZE_T
RANSITI
ON_FAC
TOR

This is a double between 0 and 1 representing the sizes
transition factor. The lower is the value, the more space the
mesh will need to increase its size from the regions with
small elements to the ones with large ones. It is analogous to
the one used in the GiD meshing preferences.

The value must be between 0.0
and 1.0 (both included). 0.0 is
taken if the value is lower than
0.0, and 1.0 if it is higher than
1.0.

Default value is 1.0.

GIDML_
OCTREE
MESHER
_MIN_C
OSINUS
_FOR_S
HARP_E
DGES

This parameter represents the minimum cosinus of a
dihedral angle over which an edge is considered as a sharp
edge to be preserved by the mesher.

Its value is between -1 and 1. By
default its value is -10, indicating
that no edge must be considered
as sharp.

GIDML_
OCTREE
MESHER
INPUT
IS_WAT
ERTIGHT

This parameter indicates if the contours of the volumes of
the model are watertight. If so, the mesh generator can
perform some operations in a more efficient way.

Note that watertight means that there are no holes nor
overlapping entities defining the contours of the volumes, but
they can be uncoherently oriented (it is not needed to be all
of them oriented towards the inner or outer part of the
volume).

If the value is 0, the geometry is
not watertight, and if it is 1, it is
so.

The value equal to -1 (the default
value) means that the mesher
will check itself if the boundaries
are watertight or not before
beginning the meshing process.

GIDML_
OCTREE
MESHER
_TOLER
ANCE_F
OR_GAPS

This is the minimum distance to be taken into account for
non-watertight input geometries (gaps and overlappings in
contour domains). Gaps smaller than this value, or overlaps
closer than it are skipped when generating the mesh.

It must be a positive value. If 0.0
is set (default value), a value
equal to ' /1000' is taken, where s s
is the mimimum between GIDML
_OCTREEMESHER_GENERAL_

and the diagonal of MESH_SIZE
the bounding box of the input
geometry.

GIDML_
OCTREE
MESHER
_MAX_R
ELATIVE

This is the maximum relative chordal error (chordal error
divided by the element size) allowed for the mesh
generation.

It is a positive value. By default
is -1, which means that this
parameter is not taken into
account.

GiD v16

16

_CHORD
AL_ERR
OR

GIDML_
OCTREE
MESHER
_MAX_C
HORDAL
_ERROR

This is the maximum chordal error allowed for the mesh
generation.

It is a positive value. By default
is -1, which means that this
parameter is not taken into
account.

GIDML_
OCTREE
MESHER
ONLY
GET_IN
NER_TE
TRAHED
RA

This parameter is used to get only the inner tetras of the
e mesher is not volumes. If this parameter is set, th

performing the surface fitting nor the geometrical features
preservation. This parameter is specially useful for
connecting this volume mesher with other meshers in the
boundary regions. Note that the resulting mesh (if this
parameter is set) is not body-fitted, and all the elements are
completely inside the volumes.

The value of the parameter is the
number of layers of elements not
to be considered from the
interface to the inner part of the
volumes.

By default it is 0, so the regular
mesh (with elements within the
contour) is obtained.

GIDML_
OCTREE
MESHER
_DELET
E_OUTE
R_EMBE
DDED_E
LEMENTS

This variable only affects the embedded meshes. If this
variable is set, the elements with all its nodes out of the
domain won't be written in the output mesh. It is usefull in
case where those elements are not processed by the solver,
so memory can be saved.

If its value is 1, the outer
elements are not reuturned by
the mesher.

Its default value is 0, which is the
case where all the elements are
returned in the output mesh.

GIDML_
OCTREE
MESHER
_PRIORI
ZE_OUT
ER_PAR
T_WHEN
_COLOR
ING

This parameter only take sense for non-watertight
geometries. If this parameter is set, in the ray casting
process for the nodes coloring, the nodes before the first
intersection and after the last intersection of the coloring rays
are set as outer automatically. It may be usefull when
complex non-watertight geometries are defining the domain,
and the outer skin of it has no gaps (or really small ones).

By default this value is 0, so the
coloring is done in the standard
way.

Parameters vectors

The input vector parameters for the GiDML_OctreeTetrahedraMesher module are listed hereafter. Note that the
dimension of the vector must be set in the API functions.

Name V
al
u
e
ty
pe

Description Possible values

GID
ML_

G
I

These values are the mesh size for each of the
volumes of the model. The size in 'ivol' position

If the size is 0.0, it is not considered. If the
size value is negative, it means that the

GiD v16

17

OCT
REE
MES
HER
_VO
LUM
ES_
SIZES

D
M
L
_
T
Y
P
E
_
D
O
U
B
LE

corresponds to the 'ivol+1' identifier of the volume
used when defining the volumes interfaced by the
faces (remember that the 0 identifier is reserved for
outer part of the domain). The dimension of the
vector should be the number of volumes in the
model.

mesh of that volume is not needed for the
output (it won't be returned). It has to be
considered that, although the final mesh of
those volumes is not required, it may
affect the sizes of the other volume
meshes.

Output data
The structure returned by the GiDML_OctreeTetrahedraMesher function has basically the GiDMLOutput
resulting mesh generated by the module. It is a tetrahedra volume mesh, triangles (contours of the volumes
tetrahedra meshes). Line elements meshes may also be present, if there were forced edges in the input data, or
geometrical features to be captured.

Output nodes

All the nodes involved in the output data are provided in the list of nodes coordinates of the GiDMLOutput handle
. These are the nodes from elements, faces and edges that the output mesh should have. It has to be noted that
the GiDML_OctreeTetrahedraMesher works always in 3D (3 coordinates per node).
If the input data has some for edges or faces or edges, the nodes in the output data may also user attribute
have them, if they are onto the corresponding input entities.

Module attributes for the output nodes

The module attributes for the output nodes for the GiDML_OctreeTetrahedraMesher module are listed hereafter.

Note that, for using the API functions, all of them are of entity type and type of attribute GIDML_NODE GIDML_
.MODULE_ATTRIBUTE

Name Val
ue
type

Description Possible values

GIDML_OC
TREEMESH
ER_NODES
FORCED
FROM_INP
UT

GID
ML
_T
YP
E_I
NT
EG
ER

This attribute only take sense if there are forced nodes in
the input data. In this case, it indicates the value of the
corresponding
GIDML_OCTREEMESHER_NODES_FORCED attribute
of the input node it comes from.

If the value is 0, the output
node is not comming from
any input forced node.

In case it is greater that 0, it
is the value of the
GIDML_OCTREEMESHER_
NODES_FORCED attribute
of the input node it comes
from.

GIDML_OC
TREEMESH
ER_NODES
_DISTANCES

GID
ML
_T
YP

This attribute only take sense if there are some
embedded boundary in the input data (indicated with the

The values are equal or
greater than 0.

GiD v16

18

E_
DO
UB
LE

face attribute GIDML_OCTREEMESHER_FACES_EMB
). The attribute indicates the minimum distance EDDED

from each node to an embedded boundary.

Output edges

All the line elements involved in the output data are provided in the edges' connectivities of the GiDMLOutput
handle. These are the edges coming from forced edges (in the input data), or result of geometrical features
preserving.

The output edges are linear line elements (2 nodes) or quadratic ones (3 nodes) depending on the GIDML_OCT
 parameter from the input data.REEMESHER_QUADRATIC_TYPE

The GiDML_OctreeTetrahedraMesher module is not returning any module attribute for edges from the output
data.

If the input data has some for edges or faces, the edges in the output data may also have them, user attribute
if they are onto the corresponding input entities.

Output faces

All the faces involved in the output data are provided in the faces connectivities of the GiDMLOutput handle.
These are the faces contour of each volume tetrahedra mesh.

The output faces are linear triangle elements (3 nodes) or quadratic ones (6 nodes) depending on the GIDML_O
parameter from the input data.CTREEMESHER_QUADRATIC_TYPE

The GiDML_OctreeTetrahedraMesher module is not returning any module attribute for faces from the output
data.

If the input data has some for faces, the faces in the output data may also have them, if they are user attribute
onto the input ones.

Output elements

All the volume elements involved in the output data are provided in the elements' connectivities of the
GiDMLOutput handle. These are the tetrahedra generated by the mesher for the volumes of the model.

The output elements are linear tetrahedra (4 nodes) or quadratic ones (10 nodes) depending on the GIDML_OC
parameter from the input data.TREEMESHER_QUADRATIC_TYPE

The GiDML_OctreeTetrahedraMesher module is not returning any in the output elements.user attribute

Module attributes for the output elements

If the input data have interfaces information referred to the input faces (faces attributes GIDML_OCTREEMESH
and), the elements will ER_FACES_INTERFACES_1 GIDML_OCTREEMESHER_FACES_INTERFACES_2

have the following attribute with the id (color) of the volume the tetrahedra is into.

Name Value
type

Description Possible values

GIDML_OCT
REEMESHE
R_ELEMENT
S_COLORS

GIDM
L_TY
PE_I
NTE
GER

This attribute
correponds to the
color of the volume
the tetrahedron is
into.

The color is the id used in the input data indicating the
volumes interfaced by each face (GIDML_OCTREEMESHER_
FACES_INTERFACES_1 and GIDML_OCTREEMESHER_FA
CES_INTERFACES_2 face attributes).

GiD v16

19

Note that, for using the API functions, this attribute is of entity type and type of attribute GIDML_ELEMENT GID
.ML_MODULE_ATTRIBUTE

Examples
Some simple code examples are presented in this section aiming to make more clear how to work with
GiDML_OctreeTetrahedraMesher module.

The examples are written in c++ code.

Mesh of a cube

In this example we are generating a mesh of a cube of 10 units of length size. The contour mesh of the cube is
hardcoded in this example.
The following code is providing to the mesher (as input) the contour mesh of the volume to be meshed (made of
3 node-triangles), and the general element size desired for the volume mesh as a parameter.

C++ code of the example

#include "gidml_io.h"
#include "gidml_octree_tetrahedra_mesher.h"
#define NAME_OF_MY_PROGRAM "MY_PROGRAM" //identifier of who is creating
the input data
int main() {
 //in this example a cube which contour is defined by 12 faces (3 node-
triangles) is used
 const double coordinates[24]=
{0,0,0,10,0,0,10,10,0,0,10,0,0,0,10,10,0,10,10,10,10,0,10,10};
 const int faces_conectivities[36]=
{0,1,3,1,3,2,1,2,5,2,5,6,0,4,3,3,4,7,4,5,7,5,6,7,0,1,4,1,4,5,3,2,7,7,2,6
};
 //note that the triangle faces defining the contour of the volume are
not needed to be oriented coherently (towards inner or outer part of
it).

 //Create GiDMLInput Handle.
 const int n_dimension = 3; //space dimension of the data
 const char *module_name =
GiDML_OctreeTetrahedraMesher_GetModuleName();
 const char *module_format_version =
GiDML_OctreeTetrahedraMesher_GetModuleFormatVersion(); //module data
 GiDMLInput_Handle hdl_input=GiDML_IO_NewGiDMLInputHandle(module_name,
module_format_version, NAME_OF_MY_PROGRAM, n_dimension);
 //the module name and format are interesting in case that the input
is saved/read to/from a auxiliary file, in order to identify its use

 //Fill GiDMLInput Handle with data
 //Nodes
 const int number_of_nodes = 8;
 GiDML_IO_SetNodesCoords(hdl_input, number_of_nodes, n_dimension,
number_of_nodes,coordinates); //nodes data

GiD v16

20

 //Faces
 const int number_of_faces = 12;
 const ElemType faces_element_type = GID_TRIANGLE_ELEMENT;
 const int nnode_faces = 3;
 GiDML_IO_SetFaces(hdl_input, number_of_faces, faces_conectivities,
faces_element_type, nnode_faces); //faces data

 //Parameters
 //add the parameter 'general_mesh_size'
 const double general_size = 2.0;
 GiDML_IO_SetParameter(hdl_input,"
GIDML_OCTREEMESHER_GENERAL_MESH_SIZE", general_size);

 //indicate a minimum dihedral angle to be preserved, to get the sharp
edges of the cube in the final mesh.
 const double min_cos_for_sharp_edges = -0.5; // this value (cosinus
of -120 degrees) ensures that the dihedral angles of 90 degrees
 // between the cube
faces are preserved.
 GiDML_IO_SetParameter(hdl_input,"
GIDML_OCTREEMESHER_MIN_COSINUS_FOR_SHARP_EDGES",
min_cos_for_sharp_edges);

 //Check the that the Input format is correct.
 int error_returned = GiDML_OctreeTetrahedraMesher_CheckConsistency
(hdl_input);

 //GiDMLOutput Handle.
 GiDMLOutput_Handle hdl_output = GiDML_IO_NewGiDMLOutputHandle();
 if (error_returned == 0){
 //Call the mesher.
 error_returned = GiDML_OctreeTetrahedraMesher(hdl_input,
hdl_output);
 }

 if (error_returned){
 const char *error_message =
GiDML_OctreeTetrahedraMesher_GetErrorString(error_returned);
 //somehow show this error message...
 } else {
 //Get the tetrahedra mesh
 const int number_of_nodes_in_tetra_mesh = GiDML_IO_GetNumberOfNodes
(hdl_output);
 const int num_of_tetras = GiDML_IO_GetNumberOfElements(hdl_output
);
 double *coords = NULL;
 GiDML_IO_GetNodesCoords(hdl_output , coords);
 int *tetras_connectivity = NULL;

GiD v16

21

 int fail=GiDML_IO_GetElements(hdl_output,tetras_connectivity);
 }

 //Delete data from GiDMLOutput
 GiDML_OctreeTetrahedraMesher_DeleteGiDMLOutputContent(hdl_output);

 //Delete data structures inside GiDMLInput and GiDMLOutput structures
 GiDML_IO_DeleteGiDMLInputHandle(hdl_input);
 GiDML_IO_DeleteGiDMLOutputHandle(hdl_output);

 return 0;
}

Forced edges

Note that in this example, we have ensured to preserve the sharp edges of the cube in the final mesh adding a
parameter defining the minimum cosinus of the dihedral angle to be preserved
(GIDML_OCTREEMESHER_MIN_COSINUS_FOR_SHARP_EDGES).

For this case (where we know a priori the edges we want to be preserved, we could also define the sharp edges
of the cube as forced edges. These are the 12 edges of the cube. If so, we should add to the input data the
following (and then it would not be needed to set the dihedral angle parameter):

C++ code of the example

 const int forced_edges_conectivities[24]=
{0,1,1,2,2,3,3,0,0,4,1,5,2,6,3,7,4,5,5,6,6,7,7,4};

 //Edges
 const int number_of_edgses = 12;
 const ElemType edges_element_type = GID_LINE_ELEMENT;
 const int nnode_edges = 2;
 GiDML_IO_SetEdges(hdl_input, number_of_edgses ,
forced_edges_conectivities, edges_element_type , nnode_edges);
//forced edges data

Mesh of two connected volumes

In this example, the model to be meshed consists in two cubes sharing one of its faces. The edges contour of
the common face to both cubes will be marked as forced edges in the input data.

In this example it can be seen how to include in the input data the volumes interfaced by each face of the input
data.

C++ code of the example

#include "gidml_io.h"
#include "gidml_octree_tetrahedra_mesher.h"

GiD v16

22

#define NAME_OF_MY_PROGRAM "MY_PROGRAM" //identifier of who is creating
the input data
int main() {
 //in this example a cube which contour is defined by 12 faces (3 node-
triangles) is used
 const double coordinates[36]=
{0,0,0,10,0,0,10,10,0,0,10,0,0,0,10,10,0,10,10,10,10,0,10,10,
 20,0,0,20,10,0,20,0,10,20,10,10};
 const int faces_conectivities[66]=
{0,1,3,1,3,2,1,2,5,2,5,6,0,4,3,3,4,7,4,5,7,5,6,7,0,1,4,1,4,5,3,2,7,7,2,6
,

1,8,2,8,9,2,1,8,5,8,10,5,8,9,10,9,11,10,2,9,6,9,11,6,5,10,6,10,11,6};

 //Create GiDMLInput Handle.
 const int n_dimension = 3; //space dimension of the data
 const char *module_name =
GiDML_OctreeTetrahedraMesher_GetModuleName();
 const char *module_format_version =
GiDML_OctreeTetrahedraMesher_GetModuleFormatVersion(); //module data
 GiDMLInput_Handle hdl_input=GiDML_IO_NewGiDMLInputHandle(module_name,
module_format_version, NAME_OF_MY_PROGRAM, n_dimension);
 //the module name and format are interesting in case that the input
is saved/read to/from a auxiliary file, in order to identify its use

 //Fill GiDMLInput Handle with data
 //Nodes
 const int number_of_nodes = 12;
 GiDML_IO_SetNodesCoords(hdl_input, number_of_nodes, n_dimension,
number_of_nodes,coordinates); //nodes data

 //Faces
 const int number_of_faces = 22;
 const ElemType faces_element_type = GID_TRIANGLE_ELEMENT;
 const int nnode_faces = 3;
 GiDML_IO_SetFaces(hdl_input, number_of_faces, faces_conectivities,
faces_element_type, nnode_faces); //faces data
 //topology information, indicating which volumes is interfacing each
face
 const int* vol_interfaced_1 =
{1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2};
 const int* vol_interfaced_2 =
{0,0,2,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
 //Note that the triangle faces in pos 2 and 3 (beginning from 0),
which are the faces 1,2,5 and 2,5,6 are interfacing volumes 1 and 2.
 GiDML_IO_SetAttribute(hdl_input,"
GIDML_OCTREEMESHER_FACES_INTERFACES_1",vol_interfaced_1 ,GIDML_FACE,
GIDML_MODULE_ATTRIBUTE, GIDML_TYPE_INTEGER);
 GiDML_IO_SetAttribute(hdl_input,"

GiD v16

23

GIDML_OCTREEMESHER_FACES_INTERFACES_2",vol_interfaced_2 ,GIDML_FACE,
GIDML_MODULE_ATTRIBUTE, GIDML_TYPE_INTEGER);

 //Edges
 const int forced_edges_conectivities[8]={1,2,2,6,6,5,5,1};//these are
the edges contour of the common face to both cubes
 const int number_of_edgses = 4;
 const ElemType edges_element_type = GID_LINE_ELEMENT;
 const int nnode_edges = 2;
 GiDML_IO_SetEdges(hdl_input, number_of_edgses ,
forced_edges_conectivities, edges_element_type , nnode_edges);
//forced edges data

 //Parameters
 //add the parameter 'general_mesh_size'
 const double general_size = 2.0;
 GiDML_IO_SetParameter(hdl_input,"
GIDML_OCTREEMESHER_GENERAL_MESH_SIZE", general_size);

 //indicate a minimum dihedral angle to be preserved, to get the sharp
edges of the cube in the final mesh.
 const double min_cos_for_sharp_edges = -0.5; // this value (cosinus
of -120 degrees) ensures that the dihedral angles of 90 degrees
 // between the cube
faces are preserved.
 GiDML_IO_SetParameter(hdl_input,"
GIDML_OCTREEMESHER_MIN_COSINUS_FOR_SHARP_EDGES",
min_cos_for_sharp_edges);

 //Check the that the Input format is correct.
 int error_returned = GiDML_OctreeTetrahedraMesher_CheckConsistency
(hdl_input);

 //GiDMLOutput Handle.
 GiDMLOutput_Handle hdl_output = GiDML_IO_NewGiDMLOutputHandle();
 if (error_returned == 0){
 //Call the mesher.
 error_returned = GiDML_OctreeTetrahedraMesher(hdl_input,
hdl_output);
 }

 if (error_returned)
 const char *error_message =
GiDML_OctreeTetrahedraMesher_GetErrorString(error_returned);
 //somehow show this error message...
 } else {

GiD v16

24

 //Get the tetrahedra mesh
 const int number_of_nodes_in_tetra_mesh = GiDML_IO_GetNumberOfNodes
(hdl_output);
 const int num_of_tetras = GiDML_IO_GetNumberOfElements(hdl_output
);
 double *coords = NULL;
 GiDML_IO_GetNodesCoords(hdl_output , coords);
 int *tetras_connectivity = NULL;
 int fail=GiDML_IO_GetElements(hdl_output,tetras_connectivity);
 }

 //Delete data from GiDMLOutput
 GiDML_OctreeTetrahedraMesher_DeleteGiDMLOutputContent(hdl_output);

 //Delete data structures inside GiDMLInput and GiDMLOutput structures
 GiDML_IO_DeleteGiDMLInputHandle(hdl_input);
 GiDML_IO_DeleteGiDMLOutputHandle(hdl_output);

 return 0;
}

Different sizes in each volume

In the case that a different mesh size for each volume is required (for instance, sizes 0.8 and 3), the following
parameters vector should be included in the input data:

 const int number_of_volumes = 2;
 const double* volumes_sizes = {0.8,3.0}
 GiDML_IO_SetParameterVector(hdl_input,
"GIDML_OCTREEMESHER_VOLUMES_SIZES", volumes_sizes ,
number_of_volumes);

Entities only to give mesh size information

In this example we will include in the input data some mesh entity only to provide with mesh size information,
not being part of the boundary of the mesh.

Specifically, we will include one edge from the mid point of a cube to the mid point of the other, with a mesh size
equal to 0.2.

Note that for including this information, we need to add two new nodes and one new edge. The faces definitions
remains the same. Only the parts changing from the previous example are included in the following code block.

 const double coordinates[42]=
{0,0,0,10,0,0,10,10,0,0,10,0,0,0,10,10,0,10,10,10,10,0,10,10,
 20,0,0,20,10,0,20,0,10,20,10,10,
 5,5,5,15,5,5};

 //Nodes
 const int number_of_nodes = 14;

GiD v16

25

 GiDML_IO_SetNodesCoords(hdl_input, number_of_nodes, n_dimension,
number_of_nodes,coordinates); //nodes data

//Edges
 const int forced_edges_conectivities[8]={1,2,2,6,6,5,5,1,12,13};
//these are the edges contour of the common face to both cubes
 const int number_of_edgses = 5;
 const ElemType edges_element_type = GID_LINE_ELEMENT;
 const int nnode_edges = 2;
 GiDML_IO_SetEdges(hdl_input, number_of_edgses ,
forced_edges_conectivities, edges_element_type , nnode_edges);
//forced edges data

 const int* edges_colors = {0,0,0,0,-1}; //Note that the first four
edges are marked as '0', as they are forced ones part of the boundary
of the model.
 //The '-1' value indicates
that the edge is only to provide with size information.
 GiDML_IO_SetAttribute(hdl_input,"GIDML_OCTREEMESHER_EDGES_COLORS",
edges_colors ,GIDML_EDGE, GIDML_MODULE_ATTRIBUTE, GIDML_TYPE_INTEGER);

 const int* edges_sizes = {0.,0.,0.,0.,0.2};
 GiDML_IO_SetAttribute(hdl_input,"GIDML_OCTREEMESHER_EDGES_SIZES",
edges_sizes ,GIDML_EDGE, GIDML_MODULE_ATTRIBUTE, GIDML_TYPE_DOUBLE);

User attribute to identify a patch of triangles

In this example, we will see how to obtain the patch of triangles in the output mesh corresponding to some set
of faces of the input data. It may be useful if we have some data assigned to some part of the contours of the
domain in our program code, and we want to set these data to the corresponding mesh entities of the final mesh
too.

In this example we will identify the triangles in the output mesh which are onto the common face between both
cubes.

For this, we should add a user attribute in the input data, and get the corresponding one from the output data:

 //Attribute to be added to the Faces in the input data
 const int* identifier_of_faces_input_data =
{0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
 GiDML_IO_SetAttribute(hdl_input,"MY_PROGRAM_FACE_IDENTIFIER",
identifier_of_faces_input_data ,GIDML_FACE, GIDML_USER_ATTRIBUTE,
GIDML_TYPE_INTEGER);
 //Note that the name of the attribute can be whatever. The
GiDML_OctreeTetrahedraMesher module does not know anything about it. It
just transmit it to the output data.

 //in this attribute from the output data we can get the triangles in
the output mesh corresponding to the shared face between both cubes.
The ones with value equal to '1'.

GiD v16

26

 int* identifier_of_faces_output_mesh = (int*)GiDML_IO_GetAttribute
(hdl_output,"MY_PROGRAM_FACE_IDENTIFIER",GIDML_FACE);

Embedded mesh

In this example we are generating a mesh of a cube of 10 units of length size, with an embedded contour inside
(representing a hole), which is a concentric cube of 4 units of length. The contour mesh of both cubes is
harcoded in this example.
The following code is providing to the mesher (as input) the contour mesh of the volume to be meshed body-
fitted and the one defining the embedded contour (made of 3 node-triangles). A specific mesh size of 0.5 is
provided in the faces defining the embedded volume.

C++ code of the example

#include "gidml_io.h"
#include "gidml_octree_tetrahedra_mesher.h"
#define NAME_OF_MY_PROGRAM "MY_PROGRAM" //identifier of who is creating
the input data
int main() {
 //in this example a cube which contour is defined by 12 faces (3 node-
triangles) is used
 const double coordinates[48]=
{0,0,0,10,0,0,10,10,0,0,10,0,0,0,10,10,0,10,10,10,10,0,10,10,

3,3,3,7,3,3,7,7,3,3,7,3,3,3,7,7,3,7,7,7,7,3,7,7};
 const int faces_conectivities[72]=
{0,1,3,1,3,2,1,2,5,2,5,6,0,4,3,3,4,7,4,5,7,5,6,7,0,1,4,1,4,5,3,2,7,7,2,6
,

8,9,11,9,11,10,9,10,13,10,13,14,8,12,11,11,12,15,12,13,15,13,14,15,8,9,1
2,9,12,13,11,10,15,15,10,14};
 //note that the triangle faces defining the contour of the volume are
not needed to be oriented coherently (towards inner or outer part of
it).

 //Create GiDMLInput Handle.
 const int n_dimension = 3; //space dimension of the data
 const char *module_name =
GiDML_OctreeTetrahedraMesher_GetModuleName();
 const char *module_format_version =
GiDML_OctreeTetrahedraMesher_GetModuleFormatVersion(); //module data
 GiDMLInput_Handle hdl_input=GiDML_IO_NewGiDMLInputHandle(module_name,
module_format_version, NAME_OF_MY_PROGRAM, n_dimension);
 //the module name and format are interesting in case that the input
is saved/read to/from a auxiliary file, in order to identify its use

 //Fill GiDMLInput Handle with data
 //Nodes
 const int number_of_nodes = 16;
 GiDML_IO_SetNodesCoords(hdl_input, number_of_nodes, n_dimension,

GiD v16

27

number_of_nodes,coordinates); //nodes data

 //Faces
 const int number_of_faces = 24;
 const ElemType faces_element_type = GID_TRIANGLE_ELEMENT;
 const int nnode_faces = 3;
 GiDML_IO_SetFaces(hdl_input, number_of_faces, faces_conectivities,
faces_element_type, nnode_faces); //faces data

 const int* embedded_faces =
{0,0,0,10,0,0,10,10,0,0,10,0,0,0,10,10,0,10,10,10,10,0,10,10,

3,3,3,7,3,3,7,7,3,3,7,3,3,3,7,7,3,7,7,7,7,3,7,7};
 GiDML_IO_SetAttribute(hdl_input,"GIDML_OCTREEMESHER_FACES_EMBEDDED",
embedded_faces,GIDML_FACE, GIDML_MODULE_ATTRIBUTE, GiDML_TYPE_INTEGER);

 const double* faces_mesh_sizes = {0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,
0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,

0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,
0.5,0.5,0.5,0.5,0.5,0.5};
 GiDML_IO_SetAttribute(hdl_input,"GIDML_OCTREEMESHER_FACES_SIZES",
faces_mesh_sizes ,GIDML_FACE, GIDML_MODULE_ATTRIBUTE,
GiDML_TYPE_DOUBLE);

 //Parameters
 //indicate a minimum dihedral angle to be preserved, to get the sharp
edges of the cube in the final mesh.
 const double min_cos_for_sharp_edges = -0.5; // this value (cosinus
of -120 degrees) ensures that the dihedral angles of 90 degrees
 // between the cube
faces are preserved.
 GiDML_IO_SetParameter(hdl_input,"
GIDML_OCTREEMESHER_MIN_COSINUS_FOR_SHARP_EDGES",
min_cos_for_sharp_edges);

 //Check the that the Input format is correct.
 int error_returned = GiDML_OctreeTetrahedraMesher_CheckConsistency
(hdl_input);

 //GiDMLOutput Handle.
 GiDMLOutput_Handle hdl_output = GiDML_IO_NewGiDMLOutputHandle();
 if (error_returned == 0){
 //Call the mesher.
 error_returned = GiDML_OctreeTetrahedraMesher(hdl_input,
hdl_output);
 }

GiD v16

28

 if (error_returned)
 const char *error_message =
GiDML_OctreeTetrahedraMesher_GetErrorString(error_returned);
 //somehow show this error message...
 } else {
 //Get the tetrahedra mesh
 const int number_of_nodes_in_tetra_mesh = GiDML_IO_GetNumberOfNodes
(hdl_output);
 const int num_of_tetras = GiDML_IO_GetNumberOfElements(hdl_output
);
 double *coords = NULL;
 GiDML_IO_GetNodesCoords(hdl_output , coords);

 //Nodes distances to embedded contour
 double* distances = (double*)GiDML_IO_GetAttribute(hdl_output ,"
GIDML_OCTREEMESHER_NODES_DISTANCES_FOR_EMBEDDED",GIDML_NODE);

 int *tetras_connectivity = NULL;
 int fail=GiDML_IO_GetElements(hdl_output,tetras_connectivity);
 }

 //Delete data from GiDMLOutput
 GiDML_OctreeTetrahedraMesher_DeleteGiDMLOutputContent(hdl_output);

 //Delete data structures inside GiDMLInput and GiDMLOutput structures
 GiDML_IO_DeleteGiDMLInputHandle(hdl_input);
 GiDML_IO_DeleteGiDMLOutputHandle(hdl_output);

 return 0;
}

Note that one could set the parameter
GIDML_OCTREEMESHER_DELETE_OUTER_EMBEDDED_ELEMENTS to avoid receiving in the output data
the elements with all its nodes in the outer part of the domain (in this case, inside the hole defined by the
embedded contour).

In this case, the following lines should be added when filling the input data:

const int delete_outer_elems_in_embedded=1;
GiDML_IO_SetParameter(hdl_input,
"GIDML_OCTREEMESHER_DELETE_OUTER_EMBEDDED_ELEMENTS",
delete_outer_elems_in_embedded);

Terms of use of the module
CIMNE is the propietary of this module. Any use of it involves the signment of an agreement with CIMNE.

Please, contact if you are interested in integrating the GiDML_OctreeTetrahedraMesher gidml@cimne.upc.edu
module inside your software.

mailto:gidml@cimne.upc.edu

	Introduction
	Module description
	General overview
	Mesh size information
	Forced nodes and edges
	Preserve geometrical features
	Topology preservation
	Working with non-watertight geometries

	Module functions
	Module and version information
	GiDML_OctreeTetrahedraMesher
	GiDML_OctreeTetrahedraMesher_CheckConsistency
	GiDML_OctreeTetrahedraMesher_GetErrorString
	GiDML_OctreeTetrahedraMesher_DeleteGiDMLOutputContent

	Input data
	Spatial dimension
	Input nodes
	Module attributes for the input nodes

	Input edges
	Module attributes for the input edges
	User attributes for input edges

	Input faces
	Module attributes for the input faces
	User attributes for input faces

	Input elements
	Module attributes for input elements

	Input parameters

	Output data
	Output nodes
	Module attributes for the output nodes

	Output edges
	Output faces
	Output elements
	Module attributes for the output elements

	Examples
	Mesh of a cube
	Forced edges

	Mesh of two connected volumes
	Different sizes in each volume
	Entities only to give mesh size information
	User attribute to identify a patch of triangles

	Embedded mesh

	Terms of use of the module

