Postprocess results format: ProjectName.post.res |
Note : The new postprocess results format requires GiD version 6.1.4b or higher.
Note : Code developers can download the GiDpost tool from the GiD web page (http://www.gidhome.com/support_team/gidpost.html ); this is a C/C++/Fortran library for creating postprocess files for GiD in both ASCII and compressed binary format.
This is the ASCII format description:
The first line of the files with results written in this new postprocess format should be:
GiD Post Results File 1.0
Comment lines are allowed and should begin with a '#'. Blank lines are also allowed.
Results files can also be included with the keyword include , for instance:
include "My Other Results File"
This is useful, for instance, for sharing several GaussPoints definitions and ResultRangeTable among different analyses.
This 'include' should be outside the Blocks of information.
There are several types of Blocks of information, all of them identified by a keyword:
Gauss Points |
If Gauss points are to be included, they must be defined before the Result which uses them. Each Gauss points block is defined between the lines GaussPoints and End GaussPoints.
The structure is as follows, and should:
GaussPoints "gauss_points_name" Elemtype my_type "mesh_name"
where
- GaussPoints, elemtype: are not case-sensitive;
"gauss_points_name":
is a name for the gauss points set, which will be used as reference by the results that are located on these gauss points;
my_type:
decribes which element type these gauss points are for, i.e.Point, Linear, Triangle, Quadrilateral, Tetrahedra or Hexahedra
;
"mesh_name":
is an optional field. If this field is missing, the gauss points are defined for all the elements of type my_type. If a mesh name is given, the gauss points are only defined for this mesh.
Number of Gauss Points: number_gauss_points_per_element
Nodes included
Nodes not included
Natural Coordinates: Internal
Natural Coordinates: Given
natural_coordinates_for_gauss_point_1 . . . natural_coordinates_for_gauss_point_n
where
- Number of Gauss Points: number_gauss_points_per_element: is not case-sensitive and is followed by the number of gauss points per element that defines this set. If Natural Coordinates: is set to Internal, number_gauss_points_per_element should be one of:
- 1, 3, 6 for Triangles;
- 1, 4, 9 for Quadrilaterals;
- 1, 4, 10 for Tetrahedra;
- 1, 8, 27 for Hexahedra;
- 1, 6 for Prisms;
- 1, 5 for Pyramids; and
- 1, ... n points equally spaced over lines.
For triangles and quadrilaterals the order of the gauss points with Internal natural coordinates will be this:
![]()
![]()
![]()
Internal coordinates:
( 0, 0)
Internal coordinates:
a=0.57735027
(-a,-a) ( a,-a)
( a, a) (-a, a)
Internal coordinates:
a=0.77459667
(-a,-a) ( a,-a) ( a, a)
(-a, a) ( 0,-a) ( a, 0)
( 0, a) (-a, 0) ( 0, 0)
Gauss Points positions of the quadrature of Gauss-Legendre Quadrilaterals
![]()
![]()
![]()
Internal coordinates:
a=1/3
( a, a)
Internal coordinates:
a=1/2
( a, 0) ( a, a) ( 0, a)
Internal coordinates:
a=0.09157621 b=0.81684757
c=0.44594849 d=0.10810301
( a, a) ( b, a) ( a, b)
( c, d) ( c, c) ( d, c)
Gauss Points positions of the quadrature of Gauss for Triangles
For tetrahedra the order of the Internal Gauss Points is this:
![]()
![]()
Internal coordinates:
a=(5+3*sqrt(5))/20=0.585410196624968
b=(5-sqrt(5))/20 =0.138196601125010
( b, b, b) ( a, b, b) ( b, a, b) ( b, b, a)
Internal coordinates:
a=0.108103018168070
b=0.445948490915965
c=0.816847572980459
( a, a, a) ( c, a, a) ( a, c, a) ( a, a, c)
( b, a, a) ( b, b, a) ( a, b, a)
( a, a, b) ( b, a, b) ( a, b, b)
For hexahedra the order of the Internal Gauss Points is this:
![]()
![]()
Internal coordinates:
a=0.577350269189626
(-a,-a,-a) ( a,-a,-a) ( a, a,-a) (-a, a,-a)
(-a,-a, a) ( a,-a, a) ( a, a, a) (-a, a, a)
Internal coordinates:
a = 0.774596669241483
(-a,-a,-a) ( a,-a,-a) ( a, a,-a) (-a, a,-a)
(-a,-a, a) ( a,-a, a) ( a, a, a) (-a, a, a)
( 0,-a,-a) ( a, 0,-a) ( 0, a,-a) (-a, 0,-a)
(-a,-a, 0) ( a,-a, 0) ( a, a, 0) (-a, a, 0)
( 0,-a, a) ( a, 0, a) ( 0, a, a) (-a, 0, a)
( 0, 0,-a)
( 0,-a, 0) ( a, 0, 0) ( 0, a, 0) (-a, 0, 0)
( 0, 0, a)
( 0, 0, 0)
For prisms the order of the Internal Gauss Points is this:
![]()
Internal coordinates:
a=1/6=0.166666666666666
b=4/6=0.666666666666666
c=1/2-1/(2sqrt(3)) =0.211324865405187
d=1/2+1/(2sqrt(3))=0.788675134594812
( a, a, c) ( b, a, c) ( a, b, c)
( a, a, d) ( b, a, d) ( a, b, d)
For pyramids the order of the Internal Gauss Points will be this:
![]()
Internal coordinates:
a=8.0*sqrt(2.0/15.0)/ 5.0 =0.584237394672177
b=-2/3 =-0.666666666666666
c=2/5 = 0.4
( -a, -a, b)
( a, -a, b)
( a, a, b)
( -a, a, b)
( 0.0, 0.0, c)
The given natural coordinates for Gauss Points should range:
- between 0.0 and 1.0 for Triangles, Tetrahedra and Prisms, and
- between -1.0 and 1.0 for Quadrilaterals, Hexahedra and Pyramids.
Note: If the natural coordinates used are the internal ones, almost all the Results visualization possibilities will have some limitations for tetrahedra and hexahedra with more than one gauss points. If the natural coordinates are given, these limitations are extended to those elements with number_gauss_points_per_element not included in the list written above.
- Nodes Included / Nodes not Included: are not case-sensitive, and are only necessary for gauss points on Linear elements which indicate whether or not the end nodes of the Linear element are included in the number_gauss_points_per_element count.
|
|
Note: By now, Natural Coordinates for linear elements cannot be "Given"
- Natural Coordinates: Internal / Natural Coordinates: Given: are not case-sensitive, and indicate whether the natural coordinates are calculated internally by GiD, or are given in the following lines. The natural coordinates should be written for each line and gauss point.
End GaussPoints
where End GaussPoints: is not case-sensitive.
Here is an example of results on Gauss Points:
GaussPoints "Board gauss internal" ElemType Triangle "board"
Number Of Gauss Points: 3
Natural Coordinates: internal
end gausspoints
Result Range Table |
If a Result Range Table is to be included, it must be defined before the Result which uses it.
Each Result Range Table is defined between the lines ResultRangesTable and End ResultRangesTable.
The structure is as follows and should:
ResultRangesTable "ResultsRangeTableName"
where ResultRangesTable: is not case-sensitive; "ResultsRangeTableName": is a name for the Result Ranges Table, which will be used as a reference by the results that use this Result Ranges Table.
Min_Value - Max_Value: "Range Name"
where
- Min_value : is the minimum value of the range, and may be void if the Max_value is given. If void, the minimum value of the result will be used;
- Max_value : is the maximum value of the range, and may be void if the Min_value is given. If void, the maximum value of the result will be used;
- "Range Name" : is the name of the range which will appear on legends and labels.
End ResultRangesTable
where
End ResultRangesTable: is not case-sensitive.
Here are several examples of results range tables:
ResultRangesTable "My table"
# all the ranges are min <= res < max except
# the last range is min <= res <= max
- 0.3: "Less"
0.3 - 0.7: "Normal"
0.7 - : "Too much"
End ResultRangesTable
ResultRangesTable "My table"
0.3 - 0.7: "Normal"
0.7 - 0.9: "Too much"
End ResultRangesTable
ResultRangesTable "My table"
0.3 - 0.7: "Normal"
0.7 - : "Too much"
End ResultRangesTable
Result block |
Each Result block is identified by a Result header, followed by several optional properties: component names, ranges table, and the result values, defined by the lines Values and End Values.
The structure is as follows and should:
Result "result name" "analysis name" step_value my_result_type my_location "location name"
where
- Result: is not case-sensitive;
- "
result name
": is a name for the Result, which will be used for menus; if the result name contains spaces it should be written between "" or between {}.
- "
analysis name
": is the name of the analysis of this Result, which will be used for menus; if the analysis name contains spaces it should be written between "" or between {}.
step_value:
is the value of the step inside the analysis "analysis name";
my_type:
describes the type of the Result. It should be one of the following:Scalar, Vector, Matrix, PlainDeformationMatrix, MainMatrix, LocalAxes
;
my_location:
is where the Result is located. It should be one of the following:OnNodes, OnGaussPoints
. If the Result isOnGaussPoints,
a"location name"
should be entered;
- "
location name
": is the name of the Gauss Points on which the Result is defined.
Note: Results can be grouped into 'folders' like in the following picture
![]()
|
|
by just grouping of results using slahes in the result names:
Result “Mechanical//Pressures//Water pressure
” “Time analysis” 60 …
Result “Physical//Saturation
” “Time analysis” 60 Scalar OnNodes
and so on...
ResultRangesTable "Name of a result ranges table" ComponentNames "Name of Component 1", "Name of Component 2"
where
- ResultRangesTable "Name of a result ranges table": (optional) is not case-sensitive, followed by the name of the previously defined Result Ranges Table, which will be used if the Contour Ranges result visualization is chosen (see Result Range Table );
- ComponentNames "Name of Component 1", "Name of Component 2": (optional) is not case-sensitive, followed by the names of the components of the results which will be used in GiD. The number of Component Names are:
- One for a Scalar Result
- Three for a Vector Result
- Six for a Matrix Result
- Four for a PlainDeformationMatrix Result
- Six for a MainMatrix Result
- Three for a LocalAxes Result
Values
node_or_elem_number component_1_value component_2_value
. . . node_or_elem_number component_1_value component_2_valu
e
End Values
where
- Values: is not case-sensitive, and indicates the beginning of the results values section;
- The lines
- node_or_elem_number component_1_value component_2_value
- . . .
- node_or_elem_number component_1_value component_2_value
are the values of the result at the related 'node_or_elem_number'.
The number of results values are limited thus:
- If the Result is located OnNodes, they are limited to the number of nodes defined in ProjectName.flavia.msh.
- If the Result is located OnGaussPoints "My GP", and if the Gauss Points "My GP" are defined for the mesh "My mesh", the limit is the number of gauss points in "My GP" multiplied by the number of elements of the mesh "My mesh".
For results in gauss points, each element must have 'ngauss' lines of results.
For example, if the number of gauss points is 3, then for an element, 3 lines of gauss point result must appear.
Values
1 1.155
2.9
3.955
End Values
Holes are allowed in any result. The element nodes with no result defined will not be drawn, i.e. they will appear transparent.
The number of components for each Result Value are:
- for Scalar results: one component result_number_i scalar_value
- for Vector results: three components, with an optional fourth component for signed modules result_number_i x_value y_value z_value result_number_i x_value y_value z_value signed_module_value
- for Matrix results: three components (2D models) or six components (3D models)2D: result_number_i Sxx_value Syy_value Sxy_value3D: result_number_i Sxx_value Syy_value Szz_value Sxy_value Syz_value Sxz_value
- for PlainDeformationMatrix results: four components result_number_i Sxx_value Syy_value Sxy_value Szz_value
- for MainMatrix results: twelve components result_number_i Si_value Sii_value Siii_value Vix_value Viy_value Viz_value Viix_value Viiy_value Viiz_value Viiix_value Viiiy_value Viiiz_value
- for LocalAxes results: three components describing the Euler angles result_number_i euler_ang_1_value euler_ang_2_value euler_ang_3_value. The local axes willl be calculated like this:
e1=euler angle 1
e2=euler angle 2
e3=euler angle 3
cosA=cos(e1)
sinA=sin(e1)
cosB=cos(e2)
sinB=sin(e2)
cosC=cos(e3)
sinC=sin(e3)
VectorX(x)=cosC*cosA-cosB*sinA*sinC
VectorX(y)=-sinC*cosA-cosB*sinA*cosC
VectorX(z)=sinB*sinA
VectorY(x)=cosC*sinA-cosB*cosA*sinC
VectorY(y)=-sinC*sinA-cosB*cosA*cosC
VectorY(z)=-sinB*cosA
VectorZ(x)=sinC*sinB
VectorZ(y)=cosC*sinB
VectorZ(z)=cosB
Look for LocalAxesDef(EulerAngles) atSpecific commands for a more detailed explanation.
- End Values: is not case-sensitive, and indicates the end of the results values section.
Note: For Matrix and PlainDeformationMatrix results, the Si, Sii and Siii components are calculated by GiD, which represents the eigen values & vectors of the matrix results, and which are ordered according to the eigen value.
Result group |
Results can be grouped into one block. These results belong to the same time step of the same analysis and are located in the same place. So all the results in the group are nodal results or are defined over the same gauss points set.
Each Result group is identified by a ResultGroup header, followed by the results descriptions and its optional properties - such as components names and ranges tables, and the results values - all between the lines Values and End values.
The structure is as follows and should:
ResultGroup "analysis name" step_value my_location "location name"
where
- ResultGroup: is not case-sensitive;
- "analysis name": is the name of the analysis of this ResultGroup, which will be used for menus; if the analysis name contains spaces it should be written between "" or between {}.
- step_value: is the value of the step inside the analysis "analysis name";
- my_location: is where the ResultGroup is located. It should be one of the following: OnNodes, OnGaussPoints. If the ResultGroup is OnGaussPoints, a "location name" should be entered.
- "location name": is the name of the Gauss Points on which the ResultGroup is defined.
ResultDescription "result name" my_result_type[:components_number]
ResultRangesTable "Name of a result ranges table"
ComponentNames "Name of Component 1", "Name of Component 2"
where
- ResultDescription: is not case-sensitive;
- "result name": is a name for the Result, which will be used for menus; if the result name contains spaces it should be written between "" or between {}.
- my_type: describes the type of the Result. It should be one of the following: Scalar, Vector, Matrix, PlainDeformationMatrix, MainMatrix, or LocalAxes. The number of components for each type is as follows:
- One for a Scalar: the_scalar_value
- Three for a Vector: X, Y and Z
- Six for a Matrix: Sxx, Syy, Szz, Sxy, Syz and Sxz
- Four for a PlainDeformationMatrix: Sxx_value, Syy, Sxy and Szz
- Twelve for a MainMatrix: Si, Sii, Siii, ViX, ViY, ViZ, ViiX, ViiY, ViiZ, ViiiX, ViiiY and ViiiZ
- Three for a LocalAxes: euler_ang_1, euler_ang_2 and euler_ang_3
Following the description of the type of the result, an optional modifier can be appended to specify the number of components separated by a colon. It only makes sense to indicate the number of components on vectors and matrices:
- Vector:2, Vector:3 or Vector:4: which specify:
- Vector:2: X and Y
- Vector:3: X, Y and Z
- Vector:4: X, Y, Z and |Vector| (module of the vector, with sign for some tricks)
The default (Vector) is 3 components per vector.
- Matrix:3 or Matrix:6: which specify:
- Matrix:3: Sxx, Syy and Sxy
- Matrix:6: Sxx, Syy, Szz, Sxy, Syz and Sxz
The default (Matrix) is 6 components for matrices.
Here are some examples:
ResultDescription "Displacements" Vector:2
ResultDescription "2D matrix" Matrix:3
ResultDescription "LineDiagramVector" Vector:4
and where (optional properties)
- ResultRangesTable "Name of a result ranges table": (optional) is not case-sensitive, and is followed by the name of the previously defined Result Ranges Table which will be used if the Contour Ranges result visualization is chosen (see Result Range Table );
- ComponentNames "Name of Component 1", "Name of Component 2": (optional) is not case-sensitive, and is followed by the names of the components of the results which will be used in GiD. The number of Component Names are:
- One for a Scalar Result
- Three for a Vector Result
- Six for a Matrix Result
- Four for a PlainDeformationMatrix Result
- Six for a MainMatrix Result
- Three for a LocalAxes Result
Values
location_1 result_1_component_1_value result_1_component_2_value result_1_component_3_value result_2_component_2_value result_2_component_2_value result_2_component_3_value
. . .
location_n result_1_component_1_value result_1_component_2_value result_1_component_3_value result_2_component_2_value result_2_component_2_value result_2_component_3_value
End Values
where
- Values: is not case-sensitive, and indicates the beginning of the results values section;
- The lines
- location_1 result_1_component_1_value result_1_component_2_value result_1_component_3_value result_2_component_2_value result_2_component_2_value result_2_component_3_value
- . . .
- location_n result_1_component_1_value result_1_component_2_value result_1_component_3_value result_2_component_2_value result_2_component_2_value result_2_component_3_value
are the values of the various results described with ResultDescription for each location. All the results values for the location 'i' should be written in the same line 'i'.
The number of results values are limited thus:
- If the Result is located OnNodes, they are limited to the number of nodes defined in ProjectName.post.msh, or the old ProjectName.flavia.msh.
- If the Result is located OnGaussPoints "My GP", and if the Gauss Points "My GP" are defined for the mesh "My mesh", the limit is the number of gauss points in "My GP" multiplied by the number of elements of the mesh "My mesh".
Holes are allowed. The element nodes with no result defined will not be drawn, i.e. they will appear transparent.
The number of components for each ResultDescription are:
- for Scalar results: one component result_number_i scalar_value
- for Vector results: three components result_number_i x_value y_value z_value
- for Matrix results: six components (3D models)3D: result_number_i Sxx_value Syy_value Szz_value Sxy_value Syz_value Sxz_value
- for PlainDeformationMatrix results: four components result_number_i Sxx_value Syy_value Sxy_value Szz_value
- for MainMatrix results: twelve components result_number_i Si_value Sii_value Siii_value Vix_value Viy_value Viz_value Viix_value Viiy_value Viiz_value Viiix_value Viiiy_value Viiiz_value
- for LocalAxes results: three components describing the Euler angles result_number_i euler_ang_1_value euler_ang_2_value euler_ang_3_value
- End Values: is not case-sensitive, and indicates the end of the results group values section.
Note: Vectors in a ResultGroup always have three components.
Note: Matrices in a ResultGroup always have six components.
Note: All the results of one node or gauss point should be written on the same line.
Note: For Matrix and PlainDeformationMatrix results, the Si, Sii and Siii components are calculated by GiD, which represents the eigen values & vectors of the matrix results, and which are ordered according to the eigen value.
Nodal ResultGroup example:
ResultGroup
"Load Analysis" 1 OnNodes
ResultDescription
"Ranges test" Scalar
ResultRangesTable
"My table"
ResultDescription
"Scalar test" Scalar
ResultRangesTable
"Pressure"
ResultDescription
"Displacements" Vector
ComponentNames
"X-Displ", "Y-Displ" "Z-Displ"
ResultDescription
"Nodal Stresses" Matrix
ComponentNames
"Sx", "Sy", "Sz", "Sxy", "Syz", "Sxz"
Values
1 0.0 0.000E+00 0.000E+00 0.000E+00 0.0 0.550E+00 0.972E-01 -0.154E+00 0.0 0.0 0.0
2 6.4e-01 0.208E-04 0.208E-04 -0.191E-04 0.0 0.506E+00 0.338E-01 -0.105E+00 0.0 0.0 0.0
3 0.0 0.355E-04 0.355E-04 -0.376E-04 0.0 0.377E+00 0.441E-02 -0.547E-01 0.0 0.0 0.0
...
115 7.8e-01 0.427E-04 0.427E-04 -0.175E-03 0.0 0.156E-01 -0.158E-01 -0.300E-01 0.0 0.0 0.0
116 7.4e-01 0.243E-04 0.243E-04 -0.189E-03 0.0 0.216E-02 -0.968E-02 -0.231E-01 0.0 0.0 0.0
End Values
Gauss Points ResultGroup example:
GaussPoints
"My Gauss" ElemType Triangle "2D Beam"
Number Of Gauss Points
: 3
Natural Coordinates
: Internal
End gausspoints
ResultGroup
"Load Analysis" 1 OnGaussPoints "My Gauss"
ResultDescription
"Gauss test" Scalar
ResultDescription
"Vector Gauss" Vector
ResultDescription
"Gauss Points Stresses" PlainDeformationMatrix
Values
1 1.05 1 0 0.0 -19.4607 -1.15932 -1.43171 -6.18601
2.1 0 1 0.0 -19.4607 -1.15932 -1.43171 -6.18601
3.15 1 1 0.0 -19.4607 -1.15932 -1.43171 -6.18601
2 1.2 0 0 0.0 -20.6207 0.596461 5.04752 -6.00727
2.25 0 0 0.0 -20.6207 0.596461 5.04752 -6.00727
3.3 2.0855e-05 -1.9174e-05 0.0 -20.6207 0.596461 5.04752 -6.00727
3 1.35 2.0855e-05 -1.9174e-05 0.0 -16.0982 -1.25991 2.15101 -5.20742
2.4 2.0855e-05 -1.9174e-05 0.0 -16.0982 -1.25991 2.15101 -5.20742
3.45 2.0855e-05 -1.9174e-05 0.0 -16.0982 -1.25991 2.15101 -5.20742
...
191 29.55 4.2781e-05 -0.00017594 0.0 -0.468376 12.1979 0.610867 3.51885
30.6 4.2781e-05 -0.00017594 0.0 -0.468376 12.1979 0.610867 3.51885
31.65 4.2781e-05 -0.00017594 0.0 -0.468376 12.1979 0.610867 3.51885
192 29.7 4.2781e-05 -0.00017594 0.0 0.747727 11.0624 1.13201 3.54303
30.75 4.2781e-05 -0.00017594 0.0 0.747727 11.0624 1.13201 3.54303
31.8 2.4357e-05 -0.00018974 0.0 0.747727 11.0624 1.13201 3.54303
End Values
Results example |
Here is an example of results for the table in the previous example (see Mesh example ):
GiD Post Results File 1.0
GaussPoints "Board gauss internal" ElemType Triangle "board"
Number Of Gauss Points: 3
Natural Coordinates: internal
end gausspoints
GaussPoints "Board gauss given" ElemType Triangle "board"
Number Of Gauss Points: 3
Natural Coordinates: Given
0.2 0.2
0.6 0.2
0.2 0.6
End gausspoints
GaussPoints "Board elements" ElemType Triangle "board"
Number Of Gauss Points: 1
Natural Coordinates: internal
end gausspoints
GaussPoints "Legs gauss points" ElemType Linear
Number Of Gauss Points: 5
Nodes included
Natural Coordinates: Internal
End Gausspoints
ResultRangesTable "My table"
# el ultimo rango es min <= res <= max
- 0.3: "Less"
0.3 - 0.9: "Normal"
0.9 - 1.2: "Too much"
End ResultRangesTable
Result "Gauss element" "Load Analysis" 1 Scalar OnGaussPoints "Board elements"
Values
5 0.00000E+00
6 0.20855E-04
7 0.35517E-04
8 0.46098E-04
9 0.54377E-04
10 0.60728E-04
11 0.65328E-04
12 0.68332E-04
13 0.69931E-04
14 0.70425E-04
15 0.70452E-04
16 0.51224E-04
17 0.32917E-04
18 0.15190E-04
19 -0.32415E-05
20 -0.22903E-04
21 -0.22919E-04
22 -0.22283E-04
End Values
Result "Displacements" "Load Analysis" 1 Vector OnNodes
ResultRangesTable "My table"
ComponentNames "X-Displ", "Y-Displ", "Z-Displ"
Values
1 0.0 0.0 0.0
2 -0.1 0.1 0.5
3 0.0 0.0 0.8
4 -0.04 0.04 1.0
5 -0.05 0.05 0.7
6 0.0 0.0 0.0
7 -0.04 -0.04 1.0
8 0.0 0.0 1.2
9 -0.1 -0.1 0.5
10 0.05 0.05 0.7
11 -0.05 -0.05 0.7
12 0.04 0.04 1.0
13 0.04 -0.04 1.0
14 0.05 -0.05 0.7
15 0.0 0.0 0.0
16 0.1 0.1 0.5
17 0.0 0.0 0.8
18 0.0 0.0 0.0
19 0.1 -0.1 0.5
End Values
Result "Gauss displacements" "Load Analysis" 1 Vector OnGaussPoints "Board gauss given"
Values
5 0.1 -0.1 0.5
0.0 0.0 0.8
0.04 -0.04 1.0
6 0.0 0.0 0.8
-0.1 -0.1 0.5
-0.04 -0.04 1.0
7 -0.1 0.1 0.5
0.0 0.0 0.8
-0.04 0.04 1.0
8 0.0 0.0 0.8
0.1 0.1 0.5
0.04 0.04 1.0
9 0.04 0.04 1.0
0.1 0.1 0.5
0.05 0.05 0.7
10 0.04 0.04 1.0
0.05 0.05 0.7
-0.04 0.04 1.0
11 -0.04 -0.04 1.0
-0.1 -0.1 0.5
-0.05 -0.05 0.7
12 -0.04 -0.04 1.0
-0.05 -0.05 0.7
0.04 -0.04 1.0
13 -0.1 0.1 0.5
-0.04 0.04 1.0
-0.05 0.05 0.7
14 -0.05 0.05 0.7
-0.04 0.04 1.0
0.05 0.05 0.7
15 0.1 -0.1 0.5
0.04 -0.04 1.0
0.05 -0.05 0.7
16 0.05 -0.05 0.7
0.04 -0.04 1.0
-0.05 -0.05 0.7
17 0.0 0.0 0.8
-0.04 -0.04 1.0
-0.04 0.04 1.0
18 0.0 0.0 0.8
0.04 0.04 1.0
0.04 -0.04 1.0
19 0.04 -0.04 1.0
0.04 0.04 1.0
0.0 0.0 1.2
20 0.04 -0.04 1.0
0.0 0.0 1.2
-0.04 -0.04 1.0
21 -0.04 -0.04 1.0
0.0 0.0 1.2
-0.04 0.04 1.0
22 -0.04 0.04 1.0
0.0 0.0 1.2
0.04 0.04 1.0
End Values
Result "Legs gauss displacements" "Load Analysis" 1 Vector OnGaussPoints "Legs gauss points"
Values
1 -0.1 -0.1 0.5
-0.2 -0.2 0.375
-0.05 -0.05 0.25
0.2 0.2 0.125
0.0 0.0 0.0
2 0.1 -0.1 0.5
0.2 -0.2 0.375
0.05 -0.05 0.25
-0.2 0.2 0.125
0.0 0.0 0.0
3 0.1 0.1 0.5
0.2 0.2 0.375
0.05 0.05 0.25
-0.2 -0.2 0.125
0.0 0.0 0.0
4 -0.1 0.1 0.5
-0.2 0.2 0.375
-0.05 0.05 0.25
0.2 -0.2 0.125
0.0 0.0 0.0
End Values