OUTLINE

SUMMARY

- ANTECEDENTS
 - HOBBIES Technology LTD
 - Important milestones

- HOBBIES EM-SUITE 2016
 - Main features
 - Solving electromagnetic problems

- APPLICATIONS
 - Waveguide structures
 - Antenna Design
 - Antenna placement
 - Scattering analysis
 - EMC/EMI analysis
 - Other applications
HOBBIES is a software developed by HOBBIES Technology LTD & OHRN Enterprises Inc.
HOBBIES has been developed since 2008 in collaboration with
 – GiD team (CIMNE)
 – Compass Ingeniería y Sistemas, S.A

First commercial version in June 2012
 – HOBBIES Academic/Professional version 10 (Based on GiD 10)
 – Academic version 10 maybe found inside the book
 “HIGHER ORDER BASIS BASED INTEGRAL EQUATION SOLVER”
In 2013 HOBBIES run 8192 cores simulation at Shanghai Supercomputer Center
 – First electromagnetic software running in such amount of cores

HOBBIES becomes electromagnetic software suite in 2014
 – FEM solver added
 – New GUI based on wizard approach
ANTECEDENTS
– HOBBIES Technology LTD.
– Important milestones

HOBBIES EM-SUITE 2016
– Main features
– Solving electromagnetic problems

APPLICATIONS
– Waveguide structures
– Antenna Design
– Antenna placement
– Scattering analysis
– EMC/EMI analysis
– Other applications
Wizard based graphical user interface

Simulation performed in five steps
- Geometry modeling
- Electromagnetic parameters setup
- Meshing the model
- Running the simulation
- Visualizing the results

HOBBIES tools
- Online updates
- Navigation tree
- Model parametrization
- Internal view for volumetric meshes
- h-adaptive mesh generation
ANTECEDENTS
- HOBBIES Technology LTD.
- Important milestones

HOBBIES EM-SUITE 2016
- Main features
 - Solving electromagnetic problems

APPLICATIONS
- Antenna Design
- Antenna placement
- Scattering analysis
- EMC/EMI analysis
- Other applications
GEOMETRY MODELING

STEP 1

➢ BASIC GID TOOLS
 – Points
 – Straight lines
 – Arcs
 – NURBS lines
 – NURBS Surfaces
 – Volumes
 – Objects
 – Copy/Move operations

➢ HOBBIES TOOLS
 – Model parametrization
 – Mesh truncation (FEM)
 – Layer integration
BASIC GID TOOLS
- Points
- Straight lines
- Arcs
- NURBS lines
- NURBS Surfaces
- Volumes
- Objects
- Copy/Move operations

HOBBIES TOOLS
- MODEL PARAMETRIZATION
- Mesh truncation (FEM)
- Layer integration
GEOMETRY MODELING
STEP 1

➤ BASIC GID TOOLS
 – Points
 – Straight lines
 – Arcs
 – NURBS lines
 – NURBS Surfaces
 – Volumes
 – Objects
 – Copy/Move operations

➤ HOBBIES TOOLS
 – Model parametrization
 – Mesh truncation (FEM)
 – LAYER INTEGRATION
ELECTROMAGNETIC PARAMETERS SETUP
STEP 2

- MATERIALS
 - CREATE/EDIT
 - Delete
 - Assign/Unassign
 - View

![Image of software interface showing materials setup]

Press ESC to exit from object view.
Command:
MATERIALS
- CREATE/EDIT
- Delete

ELECTROMAGNETIC PARAMETERS SETUP
STEP 2
ELECTROMAGNETIC PARAMETERS SETUP

STEP 2

- MATERIALS
 - Create/Edit
 - DELETE
 - Assign/Unassign
 - View
ELECTROMAGNETIC PARAMETERS SETUP
STEP 2

- MATERIALS
 - Create/Edit
 - Delete
 - ASSIGN/UNASSIGN
 - View
ELECTROMAGNETIC PARAMETERS SETUP

STEP 2

- MATERIALS
 - Create/Edit
 - Delete
 - Assign/unassign
 - VIEW
ELECTROMAGNETIC PARAMETERS SETUP

STEP 2

➤ MATERIALS
 – Create/Edit
 – Delete
 – Assign/unassign
 – VIEW
ELECTROMAGNETIC PARAMETERS SETUP

STEP 2

- MATERIALS
 - Create/Edit
 - Delete
 - Assign/unassign
 - VIEW
ELECTROMAGNETIC PARAMETERS SETUP
STEP 2

- MATERIALS
 - Create/Edit
 - Delete
 - Assign/unassign
 - VIEW
ELECTROMAGNETIC PARAMETERS SETUP

STEP 2

- **BOUNDARY CONDITIONS**
 - PEC/PMC/ABC/PORTS
 - Assign/unassign
 - View
ELECTROMAGNETIC PARAMETERS SETUP

STEP 2

- BOUNDARY CONDITIONS
 - PEC/PMC/ABC/PORTS
 - ASSIGN/UNASSIGN
 - View
BOUNDARY CONDITIONS

- PEC/PMC/ABC/PORTS
- Assign/unassign
- VIEW
ELECTROMAGNETIC PARAMETERS SETUP
STEP 2

- BOUNDARY CONDITIONS
 - PEC/PMC/ABC/PORTS
 - Assign/unassign
 - VIEW
ELECTROMAGNETIC PARAMETERS SETUP

STEP 2

- **EXCITATIONS**
 - **CREATE/EDIT**
 - **WAVEPORTS**
 - Planewaves
 - Delete
 - View
ELECTROMAGNETIC PARAMETERS SETUP

STEP 2

- EXCITATIONS
 - CREATE/EDIT
 - Waveports

![Waveport Setup](image-url)

Create single wave

Wave polarization

<table>
<thead>
<tr>
<th>Component</th>
<th>Real</th>
<th>Imag</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϕ</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>θ</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Incident angles

<table>
<thead>
<tr>
<th>Angle</th>
<th>ϕ-angle</th>
<th>θ-angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angles</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

![Angle Setup](image-url)

Wave polarization

<table>
<thead>
<tr>
<th>Component</th>
<th>Real</th>
<th>Imag</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϕ</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>θ</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

![Additional waveport](image-url)
ELECTROMAGNETIC PARAMETERS SETUP
STEP 2

- EXCITATIONS
 - Create/edit
 - Waveports
 - Planewaves
 - DELETE
 - View
ELECTROMAGNETIC PARAMETERS SETUP

STEP 2

- **EXCITATIONS**
 - Create/edit
 - Waveports
 - Planewaves
 - Delete
 - VIEW
EXCITATIONS

- Create/edit
 - Waveports
 - Planewaves
- Delete
- VIEW
MESHING MODEL

STEP 3

- **GID TOOLS**
 - Unstructured
 - Structured
 - Vol. Meshes
 - Sur. Meshes

- **HOBBIES TOOLS**
 - Entity mesh view
 - Quality view
 - Min/Max. angles
 - Min/Max. edges
 - Min. Jacobian
MESHING MODEL
STEP 3

- **GID TOOLS**
 - Unstructured
 - Structured
 - Vol. Meshes
 - Sur. Meshes

- **HOBBIES TOOLS**
 - **ENTITY MESH VIEW**
 - Quality view
 - Min/Max. angles
 - Min/Max. edges
 - Min. Jacobian
MESHING MODEL

STEP 3

- **GID TOOLS**
 - Unstructured
 - Structured
 - Vol. Meshes
 - Sur. Meshes

- **HOBBIES TOOLS**
 - ENTITY MESH VIEW
 - Quality view
 - Min/Max. angles
 - Min/Max. edges
 - Min. Jacobian
MESHING MODEL
STEP 3

- **GID TOOLS**
 - Unstructured
 - Structured
 - Vol. Meshes
 - Sur. Meshes

- **HOBBIES TOOLS**
 - Entity mesh view
 - **QUALITY VIEW**
 - Min/Max. angles
 - Min/Max. edges
 - Min. Jacobian
MESHING MODEL

STEP 3

- **GID TOOLS**
 - Unstructured
 - Structured
 - Vol. Meshes
 - Sur. Meshes

- **HOBBIES TOOLS**
 - Entity mesh view
 - **QUALITY VIEW**
 - Min/Max. angles
 - Min/Max. edges
 - Min. Jacobian
RUNNING SIMULATION

STEP 4

- **FREQUENCY**
 - Single frequency
 - Frequency sweep

- **SOLVER OPTIONS**
 - Parallel/Serial
 - In-core/Out-of-core
 - MPI+Threads
 - Mesh adaptivity

- **REMOTE SIMULATION**
 - Posidonia tool
RUNNING SIMULATION

STEP 4

- **FREQUENCY**
 - Single frequency
 - Frequency sweep

- **SOLVER OPTIONS**
 - Parallel/Serial
 - In-core/Out-of-core
 - MPI+Threads
 - Mesh adaptivity

- **REMOTE SIMULATION**
 - POSIDONIA TOOL
RUNNING SIMULATION
STEP 4

- FREQUENCY
 - Single frequency
 - Frequency sweep

- SOLVER OPTIONS
 - Parallel/Serial
 - In-core/Out-of-core
 - MPI+Threads
 - Mesh adaptivity

- REMOTE SIMULATION
 - POSIDONIA TOOL
VISUALIZING THE RESULTS
STEP 5

- **GID POSTPROCESS**
 - Transparent switch

- **HOBBIES TOOLS**
 - Adaptive mesh process
 - 2D/3D Nearfield
 - 2D/3D Farfield
 - Network parameters
VISUALIZING THE RESULTS

STEP 5

- **GID POSTPROCESS**
 - Transparent switch

- **HOBBIES TOOLS**
 - **ADAPTIVE MESH PROCESS**
 - 2D/3D Nearfield
 - 2D/3D Farfield
 - Network parameters
VISUALIZING THE RESULTS
STEP 5

➢ GID POSTPROCESS
 – Transparent switch

➢ HOBBIES TOOLS
 – ADAPTIVE MESH PROCESS
 – 2D/3D Nearfield
 – 2D/3D Farfield
 – Network parameters
VISUALIZING THE RESULTS
STEP 5

- GID POSTPROCESS
 - Transparent switch

- HOBBIES TOOLS
 - ADAPTIVE MESH PROCESS
 - 2D/3D Nearfield
 - 2D/3D Farfield
 - Network parameters
VISUALIZING THE RESULTS
STEP 5

- **GID POSTPROCESS**
 - Transparent switch

- **HOBBIES TOOLS**
 - **ADAPTIVE MESH PROCESS**
 - 2D/3D Nearfield
 - 2D/3D Farfield
 - Network parameters
VISUALIZING THE RESULTS
STEP 5

- **GID POSTPROCESS**
 - Transparent switch

- **HOBBIES TOOLS**
 - **ADAPTIVE MESH PROCESS**
 - 2D/3D Nearfield
 - 2D/3D Farfield
 - Network parameters
VISUALIZING THE RESULTS
STEP 5

- **GID POSTPROCESS**
 - Transparent switch

- **HOBBIES TOOLS**
 - **ADAPTIVE MESH PROCESS**
 - 2D/3D Nearfield
 - 2D/3D Farfield
 - Network parameters
VISUALIZING THE RESULTS
STEP 5

- **GID POSTPROCESS**
 - Transparent switch

- **HOBBIES TOOLS**
 - **ADAPTIVE MESH PROCESS**
 - 2D/3D Nearfield
 - 2D/3D Farfield
 - Network parameters
VISUALIZING THE RESULTS

STEP 5

- **GID POSTPROCESS**
 - Transparent switch

- **HOBBIES TOOLS**
 - Adaptive mesh process
 - **2D/3D NEARFIELD**
 - 2D/3D Farfield
 - Network parameters
VISUALIZING THE RESULTS

STEP 5

- GID POSTPROCESS
 - Transparent switch

- HOBBIES TOOLS
 - Adaptive mesh process
 - 2D/3D NEARFIELD
 - 2D/3D Farfield
 - Network parameters
VISUALIZING THE RESULTS
STEP 5

- **GID POSTPROCESS**
 - Transparent switch

- **HOBBIES TOOLS**
 - Adaptive mesh process
 - 2D/3D Nearfield
 - 2D/3D FARFIELD
 - Network parameters
VISUALIZING THE RESULTS
STEP 5

- **GID POSTPROCESS**
 - Transparent switch

- **HOBBIES TOOLS**
 - Adaptive mesh process
 - 2D/3D Nearfield
 - 2D/3D FARFIELD
 - Network parameters
VISUALIZING THE RESULTS
STEP 5

- **GID POSTPROCESS**
 - Transparent switch

- **HOBBIES TOOLS**
 - Adaptive mesh process
 - 2D/3D Nearfield
 - 2D/3D Farfield
 - **NETWORK PARAMETERS**
ANTECEDENTS
- HOBBIES Technology LTD.
- Important milestones

HOBBIES EM-SUITE 2016
- Main features
- Solving electromagnetic problems

APPLICATIONS
- WAVEGUIDE STRUCTURES
- Antenna Design
- Antenna placement
- Scattering analysis
- EMC/EMI analysis
- Other applications
CIRCULATOR @ 15 GHz
- Rotation structure
- Only one output port
- Lossy dielectric
- Anisotropic materials
 • Uses of Ferrites
APPLICATIONS: WAVEGUIDE STRUCTURES
WAVEGUIDE CIRCULATOR

- CIRCULATOR @ 15 GHz
 - Rotation structure
 - Only one output port
 - Lossy dielectric
 - Anisotropic materials
 - Uses of Ferrites
CIRCULATOR @ 15 GHz
- Rotation structure
- Only one output port
- Lossy dielectric
- Anisotropic materials
 - Uses of Ferrites

APPLICATIONS: WAVEGUIDE STRUCTURES
WAVEGUIDE CIRCULATOR
OUTLINE
SUMMARY

 ➢ ANTECEDENTS
 – HOBBIES Technology LTD.
 – Important milestones

 ➢ HOBBIES EM-SUITE 2016
 – Main features
 – Solving electromagnetic problems

 ➢ APPLICATIONS
 – Waveguide structures
 – ANTENNA DESIGN
 – Antenna placement
 – Scattering analysis
 – EMC/EMI analysis
 – Other applications
APPLICATIONS: ANTENNA DESIGN
CIRCULAR HORN ANTENNA

- **HORN ANTENNA @ 10 GHz**
 - Metal structure
 - Mesh truncation
 - Use of FE-IIEE
 - Directivity calculation
APPLICATIONS: ANTENNA DESIGN
CIRCULAR HORN ANTENNA

➢ HORN ANTENNA @ 10 GHz
 - Metal structure
 - Mesh truncation
 • Use of FE-IIEE
 - Directivity calculation
OUTLINE
SUMMARY

– ANTECEDENTS
 – HOBBIES Technology LTD.
 – Important milestones

– HOBBIES EM-SUITE 2016
 – Main features
 – Solving electromagnetic problems

– APPLICATIONS
 – Waveguide structures
 – Antenna design
 – ANTENNA PLACEMENT
 – Scattering analysis
 – EMC/EMI analysis
 – Other applications
Airborne 2160-Element Slotted Waveguide Phased Array

- Parallel hybrid MoM-PO method is used with the array in MoM region and the airplane in PO region.

<table>
<thead>
<tr>
<th>Frequency</th>
<th>MoM Unknowns</th>
<th>PO triangles</th>
<th>RAM/HDD</th>
<th>Platform</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.375 GHz</td>
<td>190.000</td>
<td>2.550.000</td>
<td>600 GB</td>
<td>SSC</td>
</tr>
</tbody>
</table>
Applications: Antenna Placement
Helicopter

- Antenna analysis mounted on a helicopter

3D Radiation pattern

<table>
<thead>
<tr>
<th>Frequency</th>
<th>MoM Unknowns</th>
<th>RAM/HDD</th>
<th>Platform</th>
</tr>
</thead>
<tbody>
<tr>
<td>130 MHz</td>
<td>76,000</td>
<td>90 GB</td>
<td>HPC</td>
</tr>
</tbody>
</table>
ANTECEDENTS
- HOBBIES Technology LTD.
- Important milestones

HOBBIES EM-SUITE 2016
- Main features
- Solving electromagnetic problems

APPLICATIONS
- Waveguide structures
- Antenna design
- Antenna placement
 - SCATTERING ANALYSIS
- EMC/EMI analysis
- Other applications
APPLICATIONS: SCATTERING ANALYSIS
NASA BENCHMARKS

HORN ANTENNA @ 10 GHz
- Metal structure
- Mesh truncation
 - Use of FE-IIEE
- Directivity calculation

<table>
<thead>
<tr>
<th>Frequency</th>
<th>9.92 GHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plane</td>
<td>Azimuth</td>
</tr>
<tr>
<td>Polarization</td>
<td>θθ (horizontal)</td>
</tr>
<tr>
<td>Platform</td>
<td>Laptop</td>
</tr>
</tbody>
</table>

Success in RCS analysis for NASA benchmarks: NASA Almond, Ogive, Double ogive, Cone-sphere

APPLICATIONS: SCATTERING ANALYSIS
NASA BENCHMARKS

Applications: Scattering Analysis

- Bistatic RCS of JINA 2006 Almond

Specifications:

- **Size**: 2.5 meters
- **Frequency**: 8 GHz
- **Planewave**: Incident x-axis
- **Polarization**: ΦΦ (vertical), θθ (horizontal)
- **Unknowns**: 315,000
- **RAM/HDD**: 1.58 TB
- **Time**: 12.2 hours
- **Platform**: SSC
RCS of Apache Helicopter

- **Length**: 17.7 m (47.2 λ)
- **Width**: 14.6 m (38.9 λ)
- **Height**: 3.8 m (10.13 λ)
- **Frequency**: 800 MHz
- **Planewave**: Φ = 90° (morro)
- **Polarization**: ΦΦ (vertical)
- **Unknowns**: 255.000
- **RAM/HDD**: 968.94 GB
- **Time**: 9.67 hours
- **Platform**: SSC
- **Cores**: 512

Blades: $\varepsilon_r = 4.5$
Wheels: $\varepsilon_r = 4.5$
OUTLINE
SUMMARY

➢ ANTECEDENTS
 – HOBBIES Technology LTD.
 – Important milestones

➢ HOBBIES EM-SUITE 2016
 – Main features
 – Solving electromagnetic problems

➢ APPLICATIONS
 – Waveguide structures
 – Antenna design
 – Antenna placement
 – Scattering analysis
 – EMC/EMI ANALYSIS
 – Other applications
Impulse Radiating Antennas (IRA)

- Radiates over a large bandwidth a short impulse
- Antennas appropriate for transient radars (to find buried targets) or to distort the time shape of the received electromagnetic field.

Applications: EMC/EMI Analysis

<table>
<thead>
<tr>
<th>Frequency</th>
<th>MoM Unknowns</th>
<th>RAM/HDD</th>
<th>Platform</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 GHz</td>
<td>550,000</td>
<td>4.5 TB</td>
<td>HPC</td>
</tr>
</tbody>
</table>
Impulse Radiating Antennas (IRA)

- Radiates over a large bandwidth a short impulse
- Antennas appropriate for transient radars (to find buried targets) or to distort the time shape of the received electromagnetic field.

<table>
<thead>
<tr>
<th>Frequency</th>
<th>MoM Unknowns</th>
<th>RAM/HDD</th>
<th>Platform</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 GHz</td>
<td>550,000</td>
<td>4.5 TB</td>
<td>HPC</td>
</tr>
</tbody>
</table>
ANTECEDENTS
 – HOBBIES Technology LTD.
 – Important milestones

HOBBIES EM-SUITE 2016
 – Main features
 – Solving electromagnetic problems

APPLICATIONS
 – Waveguide structures
 – Antenna design
 – Antenna placement
 – Scattering analysis
 – EMC/EMI analysis
 – OTHER APPLICATIONS
Radome design
- After design/optimize your antenna a Radome can be designed using HOBBIES

FSS simulation
- Over curved or flat surfaces
QUESTIONS?
THANK YOU FOR YOUR ATTENTION!

HOBBIES ELECTROMAGNETIC SUITE 2016
HIGHER ORDER BASIS BASED INTEGRAL EQUATION SOLVER

Contact: dgdonoro@gmail.com